Variationsrechnung

2. Übung, Lösungsvorschlag

Gruppenübung

G 1 Let

$$
D=\left\{u \in C^{1}[0,1]: u(0)=a \wedge u(1)=b\right\}
$$

and let $\mathcal{I}[u]$ denote the length of curve $x \mapsto(x, u(x))$ for $u \in D$.

1. Write $\mathcal{I}[u]$ in integral form.

$$
\mathcal{I}[u]=\int_{0}^{1} \sqrt{1+\left(u^{\prime}(x)\right)^{2}} d x
$$

2. Let $\phi \in C_{\infty}^{0}(0,1)$ and let $f(t)=\mathcal{I}[u+t \phi]$ for $t \in \mathbb{R}$. Observe that $u+t \phi \in D$ and then compute $f^{\prime}(t)$.

$$
f^{\prime}(t)=\frac{d}{d t} \int_{0}^{1} \sqrt{1+\left(u^{\prime}(x)+t \phi^{\prime}(x)\right)^{2}} d x=\int_{0}^{1} \frac{\phi^{\prime}(x)\left(u^{\prime}(x)+t \phi^{\prime}(x)\right)}{\sqrt{1+\left(u^{\prime}(x)+t \phi^{\prime}(x)\right)^{2}}} d x
$$

3. Suppose $u \in D$ is such that

$$
\mathcal{I}[u]=\min _{v \in D} \mathcal{I}[v] .
$$

What condition must f satisfy? Is this condition also sufficient? Write a proper differential equation for u and solve it.

The condition is $f^{\prime}(0)=0$ and it is usually not sufficient for the minimum to exist. Notice that

$$
f^{\prime}(0)=\int_{0}^{1} \frac{\phi^{\prime}(x) u^{\prime}(x)}{\sqrt{1+\left(u^{\prime}(x)\right)^{2}}} d x
$$

and so, after we differentiate by parts and note that $\phi(0)=\phi(1)=0$ (since ϕ has compact support):

$$
f^{\prime}(0)=-\int_{0}^{1} \phi(x) \frac{d}{d x}\left(\frac{u^{\prime}(x)}{\sqrt{1+\left(u^{\prime}(x)\right)^{2}}}\right) d x=0
$$

Now, since ϕ is an arbitrary function, we get the condition

$$
\frac{d}{d x}\left(\frac{u^{\prime}(x)}{\sqrt{1+\left(u^{\prime}(x)\right)^{2}}}\right)=0
$$

and so

$$
\frac{u^{\prime}(x)}{\sqrt{1+\left(u^{\prime}(x)\right)^{2}}}=\lambda
$$

where $|\lambda|<1$. Therefore

$$
\frac{\left(u^{\prime}(x)\right)^{2}}{1+\left(u^{\prime}(x)\right)^{2}}=1-\frac{1}{1+\left(u^{\prime}(x)\right)^{2}}=\lambda^{2}
$$

and so

$$
u^{\prime}(x)=\sqrt{\frac{\lambda^{2}}{1-\lambda^{2}}} \Rightarrow u(x)=x \frac{|\lambda|}{\sqrt{1-\lambda^{2}}}+C
$$

Now we choose the constants λ and C so that $u(0)=a$ and $u(1)=b$.

G 2 Let

$$
\mathcal{I}[u]=\int_{0}^{1} \sqrt{1+\left(u^{\prime}(x)\right)^{2}}+\lambda u(x) d x
$$

for $u \in D$ with $\lambda \neq 0$. Write the Euler-Lagrange equations and solve them.
This is done similarly as above. We get the equation

$$
-\frac{d}{d x}\left(\frac{u^{\prime}(x)}{\sqrt{1+\left(u^{\prime}(x)\right)^{2}}}\right)+\lambda=0
$$

and so

$$
\frac{u^{\prime}(x)}{\sqrt{1+\left(u^{\prime}(x)\right)^{2}}}=\lambda x+C .
$$

This gives

$$
1-\frac{1}{1+\left(u^{\prime}(x)\right)^{2}}=(\lambda x+C)^{2}
$$

and so

$$
u^{\prime}(x)=-\frac{\lambda x+C}{\sqrt{1-(\lambda x+C)^{2}}},
$$

where we assumed that $\lambda x+C \leq 0$. It is easy to integrate the above equation:

$$
u(x)=\sqrt{1-(\lambda x+C)^{2}}+C^{\prime} .
$$

This is a circle, where C and C^{\prime} are chosen in such a way that $u \in D$.
G 3 Using Lagrange multipliers, minimize $f(x, y)=x^{2}+y^{2}$ subject to the condition $x+y=1$.
We write

$$
F(x, y, \lambda)=x^{2}+y^{2}-\lambda(x+y-1)
$$

and the necessary conditions are

$$
\begin{aligned}
& 0=F_{x}=2 x-\lambda \\
& 0=F_{y}=2 y-\lambda \\
& 0=F_{\lambda}=-x-y+1 .
\end{aligned}
$$

From this we compute:

$$
\begin{array}{r}
x=y=\frac{\lambda}{2} \\
\lambda=1
\end{array}
$$

and so $x=y=\frac{1}{2}$. This in fact is a minimum, since the matrix of second derivatives

$$
D^{2} F\left(\frac{1}{2}, \frac{1}{2}, 1\right)=\left(\begin{array}{ccc}
2 & 0 & -1 \\
0 & 2 & -1 \\
-1 & -1 & 0
\end{array}\right)
$$

is positive-definite.

Hausübung

H 1 The isoperimetric problem

Let

$$
D=\left\{u \in C^{1}[-1,1]: u(-1)=u(1)=0\right\}
$$

and let $\Omega_{u}=\left\{(x, y) \in[-1,1] \times \mathbb{R}_{+}: 0 \leq y \leq u(x)\right\}, \Gamma_{u}=\left\{(x, y) \in[-1,1] \times \mathbb{R}_{+}: y=u(x)\right\}$. Let $\mathcal{A}[u]$ denote the area of Ω_{u} and let $\mathcal{L}[u]$ be the length of the curve Γ_{u}. Our goal is to solve Euler-Lagrange equations for the problem

$$
\begin{aligned}
\mathcal{L}[u] & =\min _{v \in D} \mathcal{L}[v] \quad \text { with the condition } \\
\mathcal{A}[u] & =\pi,
\end{aligned}
$$

that is, we want to find a curve of least possible length, starting at the point $(-1,0)$ and ending in $(1,0)$, with area under this curve being equal to π.

1. Write the length $\mathcal{L}[u]$ and area $\mathcal{A}[u]$ functionals.

$$
\mathcal{L}[u]=\int_{0}^{1} \sqrt{1+\left(u^{\prime}(x)\right)^{2}} d x, \quad \mathcal{A}[u]=\int_{0}^{1} u(x) d x .
$$

2. Take two functions $v, w \in C_{0}^{1}[-1,1]$. Let $s, t \in \mathbb{R}$. Write the function $f(s, t)=\mathcal{L}[u+s v+$ $t w]$ and compute its derivative. Find the conditions on s, t for which $\mathcal{A}[u+s v+t w]=\pi$.

$$
\begin{aligned}
\mathcal{L}[u+s \phi+t \psi] & =\int_{0}^{1} \sqrt{1+\left(u^{\prime}(x)+s \phi^{\prime}(x)+t \psi^{\prime}(x)\right)^{2}} d x \\
f_{s}(s, t) & =\int_{0}^{1} \frac{\phi^{\prime}(x)}{\sqrt{1+\left(u^{\prime}(x)+s \phi^{\prime}(x)+t \psi^{\prime}(x)\right)^{2}}} d x \\
f_{t}(s, t) & =\int_{0}^{1} \frac{\psi^{\prime}(x)}{\sqrt{1+\left(u^{\prime}(x)+s \phi^{\prime}(x)+t \psi^{\prime}(x)\right)^{2}}} d x .
\end{aligned}
$$

The conditions on s and t are

$$
s \int_{0}^{1} \psi(x) d x+t \int_{0}^{1} \phi(x) d x=0
$$

(since it is supposed that $\mathcal{A}[u]=\pi$).
3. Write the Euler-Lagrange equations and solve them.

Our goal is to minimize (cf. G 3)

$$
F(s, t, \lambda)=\int_{0}^{1} \sqrt{1+\left(u^{\prime}(x)+s \psi^{\prime}(x)+t \phi^{\prime}(x)\right)^{2}}+\lambda(u(x)+s \psi(x)+t \phi(x)-\pi) d x .
$$

The minimum should be attained at $s=t=0$, since u is this minimum. We get two equations which in fact are the same:

$$
-\frac{d}{d x}\left(\frac{1}{\sqrt{1+\left(u^{\prime}(x)\right)^{2}}}\right)+\lambda=0 .
$$

This has been solved in G 2 and the solution is a circle.

