Variationsrechnung

2. Übung, Lösungsvorschlag

Gruppenübung

G1 a) We have to prove that $[uv]_{C^{0,\alpha}(D)}$ is finite for every compact $D \subset \Omega$. Take $x, y \in D$ such that $x \neq y$.

$$\frac{|u(x)v(x) - u(y)v(y)|}{|x - y|^{\alpha}} = \frac{|u(x)v(x) - u(x)v(y) + u(x)v(y) - u(y)v(y)|}{|x - y|^{\alpha}}$$
$$\leq |u(x)|\frac{|v(x) - v(y)|}{|x - y|^{\alpha}} + |v(y)|\frac{|u(x) - u(y)|}{|x - y|^{\alpha}}. \tag{(*)}$$

The functions u, v are continuous on a compact set D, therefore they are bounded. The difference quotients are also bounded, from the assumptions on u, v. Therefore the right-hand side of (\star) is bounded, and so is its supremum.

b) It is sufficient to prove the inclusions for k = 0. Also, the inclusion $C^{0,1}(\overline{\Omega}) \subset C^{0,\beta}(\overline{\Omega})$ is a consequence of the inclusion $C^{0,\beta}(\overline{\Omega}) \subset C^{0,\alpha}(\overline{\Omega})$ for $0 < \alpha \leq \beta \leq 1$. To prove it, take $x, y \in \Omega$ such that $x \neq y$. Suppose $|x - y| \leq 1$. Then $|x - y|^{\beta} \geq |x - y|^{\alpha}$ and so

$$\frac{1}{|x-y|^{\beta}} \le \frac{1}{|x-y|^{\alpha}}.$$

This gives

$$\frac{|u(x) - u(y)|}{|x - y|^{\beta}} \le \frac{|u(x) - u(y)|}{|x - y|^{\alpha}} \le C$$
(†)

for $|x - y| \le 1$. For $|x - y| \ge 1$ we have $|x - y|^{\alpha} \ge 1$ and so

$$\frac{1}{|x-y|^{\alpha}} \le 1$$

which gives

$$\frac{|u(x) - u(y)|}{|x - y|^{\alpha}} \le |u(x) - u(y)| \le 2 \sup_{x \in \Omega} |u(x)| \le C$$
(1)

because $u \in C(\overline{\Omega})$.

Combining (†) and (‡) we get the desired inclusion. The remaining inclusion is obvious from definition of $C^{0,\alpha}$.

We will prove $C^1(\Omega) \subset C^{0,1}(\Omega)$. Take a compact set $D \subset \Omega$ and $x \neq y \in D$. If $u \in C^1(\Omega)$ then the mean-value theorem holds:

$$|u(x) - u(y)| \le \sup_{\xi \in D} |\nabla u(\xi)| |x - y|.$$

Since ∇u is continuous on Ω and D is a compact set, the supremum on the right is finite. Dividing by |x-y| we get boundedness of $[u]_{C^{0,1}(D)}$ for any D, which proves that $u \in C^{0,1}(\Omega)$.