Fachbereich Mathematik Prof. Dr. H.-D. Alber Przemysław Kamiński

TECHNISCHE UNIVERSITÄT DARMSTADT

28.05.2009

Variationsrechnung

4. Übung

Gruppenübung

G1 Let $f \in L^p(\mathbb{R}^n)$ and $g \in L^q(\mathbb{R}^n)$ for $1 \le p \le \infty$ and $\frac{1}{p} + \frac{1}{q} = 1$. Define the *convolution* of f and g by the formula

$$(f \star g)(x) = \int_{\mathbb{R}^n} f(x - y)g(y)dy.$$

- 1. Prove that $f \star g = g \star f$.
- 2. For $f = \chi_{[0,1]}$ compute $f \star f$ and sketch its graph.

G 2 Let $1 \le p < \infty$.

- 1. Prove that the space $C_0(\mathbb{R}^n)$ is dense in $L^p(\mathbb{R}^n)$. *Hint:* Start by approximating characteristic functions by continuous functions.
- 2. Prove that for $f \in L^p(\mathbb{R}^n)$

$$\int_{\mathbb{R}^n} |f(x+y) - f(x)|^p dx \to 0$$

when $|y| \to 0$.

Hausübung

 ${\bf H\, 1} \quad {\rm Let} \ \rho \in C_0^\infty(\mathbb{R}^n) \ {\rm be \ such \ that}$

$$\rho(x) \ge 0, \quad \int_{\mathbb{R}^n} \rho(x) dx = 1$$

and take $\rho_{\epsilon}(x) = C_{\epsilon}\rho\left(\frac{x}{\epsilon}\right)$ for $\epsilon > 0$.

- 1. Compute C_{ϵ} for which $\int_{\mathbb{R}^n} \rho_{\epsilon}(x) dx = 1$.
- 2. Take $1 \leq p < \infty$. Prove that

$$f \star \rho_{\epsilon} \to f$$
 in $L^p(\mathbb{R}^n)$

when $\epsilon \to 0$ and from this conclude that the space $C_0^{\infty}(\mathbb{R}^n)$ is dense in $L^p(\mathbb{R}^n)$. 3. Show that the above convergence does not hold for $p = \infty$.