Fachbereich Mathematik Prof. Dr. H.-D. Alber Przemysław Kamiński

TECHNISCHE UNIVERSITÄT DARMSTADT

14.05.2009

Variationsrechnung

3. Übung

Gruppenübung

 ${\bf G\,1} \quad {\rm Consider \ the \ functional}$

$$\mathcal{I}[u] = \int_0^1 \left(|u'(s)| - 1 \right)^2 + |u(s)|^2 ds.$$

- 1. Prove that the function $F(u,\xi) = (|\xi|-1)^2 + u^2$ with $(u,\xi) \in \mathbb{R}^2$ is not convex.
- 2. A function f is piecewise continuously differentiable on [0,1] if $f \in C([0,1])$ and there exist $0 = a_0 < a_1 < ... < a_n = 1$ such that $u \in C^1(\bigcup_{i=1}^n (a_{i-1}, a_i))$. Find a sequence of piecewise continuously differentiable functions u_n such that $\mathcal{I}[u_n] \to 0$. Let $u_n \to u$ pointwise in [0,1]. Is it true that $\lim_{n\to\infty} \mathcal{I}[u_n] = \mathcal{I}[u]$?
- **G 2** Prove that a continuous function $f: [a, b] \to \mathbb{R}$ is convex if and only if

$$\frac{f(x)+f(y)}{2} \geq f\left(\frac{x+y}{2}\right)$$

for all $x, y \in [a, b]$.

Hausübung

- **H1** Let $f \colon \mathbb{R}^n \to \mathbb{R}$ be convex.
 - 1. Suppose that f has a local minimum at x, i.e. there exists an open neighborhood U of x such that for all $y \in U$ $f(x) \leq f(y)$. Prove that then x is a global minimum, i.e. $f(x) \leq f(y)$ for all $x \in \mathbb{R}^n$.
 - 2. Prove that f is *hemicontinuous*, i.e. continuous along straight lines.
 - 3. Suppose f is continuously differentiable.
 - (a) Prove that f is convex if and only if

$$f(y) \ge f(x) + \nabla f(x) \cdot (y - x)$$

for all $x, y \in \mathbb{R}^n$.

(b) Prove that f is convex if and only if its gradient ∇f is monotone, i.e.

$$\left(\nabla f(x) - \nabla f(y)\right) \cdot (x - y) \ge 0$$

(cf. script, p. 36).

4. Prove that if both f and -f are convex then f is affine, i.e. f(x) = Ax + b for some $(n \times n)$ matrix A and vector $b \in \mathbb{R}^n$.