Variationsrechnung

3. Übung

Gruppenübung

G 1 Consider the functional

$$
\mathcal{I}[u]=\int_{0}^{1}\left(\left|u^{\prime}(s)\right|-1\right)^{2}+|u(s)|^{2} d s
$$

1. Prove that the function $F(u, \xi)=(|\xi|-1)^{2}+u^{2}$ with $(u, \xi) \in \mathbb{R}^{2}$ is not convex.
2. A function f is piecewise continuously differentiable on $[0,1]$ if $f \in C([0,1])$ and there exist $0=a_{0}<a_{1}<\ldots<a_{n}=1$ such that $u \in C^{1}\left(\bigcup_{i=1}^{n}\left(a_{i-1}, a_{i}\right)\right)$. Find a sequence of piecewise continuously differentiable functions u_{n} such that $\mathcal{I}\left[u_{n}\right] \rightarrow 0$. Let $u_{n} \rightarrow u$ pointwise in $[0,1]$. Is it true that $\lim _{n \rightarrow \infty} \mathcal{I}\left[u_{n}\right]=\mathcal{I}[u]$?

G 2 Prove that a continuous function $f:[a, b] \rightarrow \mathbb{R}$ is convex if and only if

$$
\frac{f(x)+f(y)}{2} \geq f\left(\frac{x+y}{2}\right)
$$

for all $x, y \in[a, b]$.

Hausübung

H 1 Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be convex.

1. Suppose that f has a local minimum at x, i.e. there exists an open neighborhood U of x such that for all $y \in U f(x) \leq f(y)$. Prove that then x is a global minimum, i.e. $f(x) \leq f(y)$ for all $x \in \mathbb{R}^{n}$.
2. Prove that f is hemicontinuous, i.e. continuous along straight lines.
3. Suppose f is continuously differentiable.
(a) Prove that f is convex if and only if

$$
f(y) \geq f(x)+\nabla f(x) \cdot(y-x)
$$

for all $x, y \in \mathbb{R}^{n}$.
(b) Prove that f is convex if and only if its gradient ∇f is monotone, i.e.

$$
(\nabla f(x)-\nabla f(y)) \cdot(x-y) \geq 0
$$

(cf. script, p. 36).
4. Prove that if both f and $-f$ are convex then f is affine, i.e. $f(x)=A x+b$ for some $(n \times n)$ matrix A and vector $b \in \mathbb{R}^{n}$.

