Fachbereich Mathematik Prof. Dr. H.-D. Alber Przemysław Kamiński

TECHNISCHE UNIVERSITÄT DARMSTADT

23.04.2009

Variationsrechnung

2. Übung

Gruppenübung

 $\mathbf{G1}$ Let

$$D = \{ u \in C^1[0,1] : u(0) = a \land u(1) = b \}$$

and let $\mathcal{I}[u]$ denote the length of curve $x \mapsto (x, u(x))$ for $u \in D$.

- 1. Write $\mathcal{I}[u]$ in integral form.
- 2. Let $\phi \in C^0_{\infty}(0,1)$ and let $f(t) = \mathcal{I}[u+t\phi]$ for $t \in \mathbb{R}$. Observe that $u + t\phi \in D$ and then compute f'(t).
- 3. Suppose $u \in D$ is such that

$$\mathcal{I}[u] = \min_{v \in D} \mathcal{I}[v].$$

What condition must f satisfy? Is this condition also sufficient? Write a proper differential equation for u and solve it.

 ${f G}\,{f 2}$ Let

$$\mathcal{I}[u] = \int_0^1 \sqrt{1 + (u'(x))^2} + \lambda u(x) dx$$

for $u \in D$ with $\lambda \neq 0$. Write the Euler-Lagrange equations and solve them.

G 3 Using Lagrange multipliers, minimize $f(x, y) = x^2 + y^2$ subject to the condition x + y = 1.

Hausübung

H1 The isoperimetric problem

Let

$$D = \{ u \in C^1[-1,1] \colon u(-1) = u(1) = 0 \}$$

and let $\Omega_u = \{(x, y) \in [-1, 1] \times \mathbb{R}_+ : 0 \le y \le u(x)\}, \Gamma_u = \{(x, y) \in [-1, 1] \times \mathbb{R}_+ : y = u(x)\}.$ Let $\mathcal{A}[u]$ denote the area of Ω_u and let $\mathcal{L}[u]$ be the length of the curve Γ_u . Our goal is to solve Euler-Lagrange equations for the problem

$$\begin{aligned} \mathcal{L}[u] &= \min_{v \in D} \mathcal{L}[v] \quad \text{with the condition} \\ \mathcal{A}[u] &= \pi, \end{aligned}$$

that is, we want to find a curve of least possible length, starting at the point (-1,0) and ending in (1,0), with area under this curve being equal to π .

- 1. Write the length $\mathcal{L}[u]$ and area $\mathcal{A}[u]$ functionals.
- 2. Take two functions $v, w \in C_0^1[-1, 1]$. Let $s, t \in \mathbb{R}$. Write the function $f(s, t) = \mathcal{L}[u+sv+tw]$ and compute its derivative. Find the conditions on s, t for which $\mathcal{A}[u+sv+tw] = \pi$.
- 3. Write the Euler-Lagrange equations and solve them.