## Variationsrechnung

## 2. Übung

## Gruppenübung

G 1 Let

$$
D=\left\{u \in C^{1}[0,1]: u(0)=a \wedge u(1)=b\right\}
$$

and let $\mathcal{I}[u]$ denote the length of curve $x \mapsto(x, u(x))$ for $u \in D$.

1. Write $\mathcal{I}[u]$ in integral form.
2. Let $\phi \in C_{\infty}^{0}(0,1)$ and let $f(t)=\mathcal{I}[u+t \phi]$ for $t \in \mathbb{R}$. Observe that $u+t \phi \in D$ and then compute $f^{\prime}(t)$.
3. Suppose $u \in D$ is such that

$$
\mathcal{I}[u]=\min _{v \in D} \mathcal{I}[v] .
$$

What condition must $f$ satisfy? Is this condition also sufficient? Write a proper differential equation for $u$ and solve it.

G 2 Let

$$
\mathcal{I}[u]=\int_{0}^{1} \sqrt{1+\left(u^{\prime}(x)\right)^{2}}+\lambda u(x) d x
$$

for $u \in D$ with $\lambda \neq 0$. Write the Euler-Lagrange equations and solve them.
G 3 Using Lagrange multipliers, minimize $f(x, y)=x^{2}+y^{2}$ subject to the condition $x+y=1$.

## Hausübung

## H 1 The isoperimetric problem

Let

$$
D=\left\{u \in C^{1}[-1,1]: u(-1)=u(1)=0\right\}
$$

and let $\Omega_{u}=\left\{(x, y) \in[-1,1] \times \mathbb{R}_{+}: 0 \leq y \leq u(x)\right\}, \Gamma_{u}=\left\{(x, y) \in[-1,1] \times \mathbb{R}_{+}: y=u(x)\right\}$. Let $\mathcal{A}[u]$ denote the area of $\Omega_{u}$ and let $\mathcal{L}[u]$ be the length of the curve $\Gamma_{u}$. Our goal is to solve Euler-Lagrange equations for the problem

$$
\begin{aligned}
\mathcal{L}[u] & =\min _{v \in D} \mathcal{L}[v] \quad \text { with the condition } \\
\mathcal{A}[u] & =\pi
\end{aligned}
$$

that is, we want to find a curve of least possible length, starting at the point $(-1,0)$ and ending in $(1,0)$, with area under this curve being equal to $\pi$.

1. Write the length $\mathcal{L}[u]$ and area $\mathcal{A}[u]$ functionals.
2. Take two functions $v, w \in C_{0}^{1}[-1,1]$. Let $s, t \in \mathbb{R}$. Write the function $f(s, t)=\mathcal{L}[u+s v+$ $t w]$ and compute its derivative. Find the conditions on $s, t$ for which $\mathcal{A}[u+s v+t w]=\pi$.
3. Write the Euler-Lagrange equations and solve them.
