Lineare Algebra

für Physiker

Zusammenfassung

 ${\bf Matthias~Schnaubelt} \\ {\bf matthias.schnaubelt@gmail.com}$

Sommersemester 2009

Inhaltsverzeichnis

1	Gruppe, Ringe, Körper	3
2	Vektorräume	4
3	Lineare Abbildungen3.1 Matrizen3.2 Strukturen linearer Abbildungen3.3 Strukturen von Matrizen3.4 Rangberechnung3.5 Darstellung linearer Abbildungen als Matrizen3.6 Gleichungssysteme	6 7 8 8 9 10 12
4		13 13 14
5	Euklidische und unitäre Räume 5.1 Geometrische Eigenschaften euklidischer und unitärer Räume	15 16
6	Metrische Räume 6.1 Orthonormalbasen	17 18 18 19 20
7	Eigenwerte und Eigenvektoren7.1 Polynome	22 23 24
8	Diagonalisierung normaler Matrizen	2 6
9	Jordansche Normalform 9.1 Verfahren zur Bestimmung einer Jordanbasis	28 29
10	Quadratische Formen	30
11	8	31 32 32

1 Gruppe, Ringe, Körper

Definition 1.1. Eine binäre Verknüpfung auf einer Menge M ist eine Abbildung

$$*: M \times M \mapsto M: (m, m') \mapsto m * m'.$$

Definition 1.2. Zu einer Menge M bezeichnet $p(M) = \{M' \mid M' \subseteq M\}$ die <u>Potenzmenge</u> von M.

Definition 1.3. Seien A, B beliebige Mengen. Dann bezeichnet $A^B = \{f \mid f : B \mapsto A\}$ die Menge aller Abbildungen von B nach A.

Definition 1.4. Eine Verknüpfung $*: M \times M \mapsto M$ heißt

• <u>kommutativ</u>, falls für alle $m, m' \in M$ gilt:

$$m * m' = m' * m$$
.

• <u>assoziativ</u>, falls für alle $m, m', m'' \in M$ gilt:

$$(m*m')*m'' = m*(m'*m'').$$

In diesem Fall ist es nicht notwendig, Klammern zu setzen, und das Paar (M,*) heißt Halbgruppe.

Ist eine Halbgruppe zusätzlich kommutativ, heißt sie <u>abelsch</u>.

Definition 1.5. Eine Halbgruppe (G, *) heißt Gruppe, falls gilt:

- $\exists e \in G \ \forall g \in G : e * g = g \ (Neutral element \ bez \ddot{u} glich *)$
- $\exists g^{-1} \in G \ \forall g \in G : g^{-1} * g = e \ (Inverses \ bez \ddot{u}glich *)$

Definition 1.6 (Ring). Sei R eine Menge mit zwei Verknüpfungen $+: R \times R \mapsto R$ und $\cdot: R \times R \mapsto R$. Das Tripel $(R, +, \cdot)$ heißt Ring, falls gilt:

- (R, +) ist eine kommutative Gruppe.
- (R, \cdot) ist eine Halbgruppe.
- Es ist $(a+b) \cdot c = a \cdot c + b \cdot c$ sowie $a \cdot (b+c) = a \cdot b + a \cdot c$ für alle $a,b,c \in R$. (Distributivgesetze)

Definition 1.7 (Körper). Ein Ring $(K, +, \cdot)$ mit additivem Neutralelement $0 \in K$ heißt Körper, falls $(K \setminus \{0\}, \cdot)$ eine kommutative Gruppe ist. Das additive Neutralelement 0 heißt Nullelement und das multiplikative Neutralelement heißt Einselement.

2 Vektorräume

Definition 2.1 (Vektorraum). Sei K ein Körper. Ein K-Vektorraum ist ein Tripel $(V, +, \cdot)$ bestehend aus einer Menge V, einer binären Verknüpfung $(Addition) + : V \times V \mapsto V$ sowie einer Skalarmultiplikation $\cdot : K \times V \mapsto V$, sodass gilt:

- (V, +) ist eine kommutative Gruppe.
- $\forall v, w \in V, \forall \lambda, \mu \in K$ gilt:

1.
$$(\lambda + \mu) \cdot \mathbf{v} = (\lambda \cdot \mathbf{v}) + (\mu \cdot \mathbf{v})$$

2.
$$\lambda \cdot (\boldsymbol{v} + \boldsymbol{w}) = (\lambda \cdot \boldsymbol{v}) + (\lambda \cdot \boldsymbol{w})$$

3.
$$\lambda \cdot (\mu \cdot \boldsymbol{v}) = (\lambda \mu) \cdot \boldsymbol{v}$$

4.
$$1 \cdot \boldsymbol{v} = \boldsymbol{v}$$

Definition 2.2. Es sei (v_1, \ldots, v_k) ein geordnetes k-Tupel von Vektoren aus einem K-Vektorraum V.

Ein Vektor $v \in V$ heißt

• <u>Linearkombination</u> von (v_1, \ldots, v_k) , falls $\lambda_1, \ldots, \lambda_k \in K$ existieren, sodass gilt

$$v = \lambda_1 v_1 + \cdots + \lambda_k v_k$$
.

• Affinkombination von $(\mathbf{v}_1, \dots, \mathbf{v}_k)$, falls $\lambda_1, \dots, \lambda_k \in K$ existieren, sodass gilt

$$\mathbf{v} = \lambda_1 \mathbf{v}_1 + \dots + \lambda_k \mathbf{v}_k \text{ und } \lambda_1 + \dots + \lambda_k = 1$$

Definition 2.3. Speziell für $K = \mathbb{R}$ heißt eine Affinkombination $\lambda_1 v_1 + \cdots + \lambda_k v_k$ eine Konvexkombination, falls zusätzlich gilt

$$0 \le \lambda_i \le 1 \ \forall \ 1 \le i \le k.$$

Definition 2.4. Das k-Tupel (v_1, \ldots, v_k) heißt linear unabhängig, falls gilt:

$$\forall (\lambda_1, \dots, \lambda_k) \in K^k : \lambda_1 \mathbf{v}_1 + \dots + \lambda_k \mathbf{v}_k = 0$$
$$\Rightarrow \lambda_1 = \dots = \lambda_k = 0$$

Andernfalls heißt $(\mathbf{v}_1, \ldots, \mathbf{v}_k)$ linear abhängig.

Lemma 2.1. Sei (v_1, \ldots, v_k) linear unabhängig.

- Für jede Permutation $\pi \in Sym(\{1,\ldots,k\})$ ist auch $(\boldsymbol{v}_{\pi(1)},\ldots,\boldsymbol{v}_{\pi(k)})$ linear unabhängig.
- Jede Teilfamilie $(\mathbf{v}_1, \dots, \mathbf{v}_k)$ für $i \leq k$ ist linear unabhängig.

Definition 2.5. Eine unendliche Familie von Vektoren aus V heißt linear unabhängig, falls jede endliche Teilfamilie linear abhängig ist.

Proposition 2.1. Für $n \geq 2$ sind v_1, \ldots, v_n genau dann linear abhängig, falls einer dieser Vektoren eine Linearkombination der übrigen ist.

Definition 2.6. Sei V ein K-Vektorraum. Eine nichtleere Teilmenge $U \subseteq V$ heißt $\underline{Teilraum}$ (oder Unterraum) von V, falls $\forall \lambda, \mu \in K \ \forall \boldsymbol{u}, \boldsymbol{v} \in U$ gilt

$$\lambda \mathbf{u} + \mu \mathbf{v} \in U$$
.

Notation: $U \leq V$

Proposition 2.2. Seien U, W Teilräume des K-Vektorraumes V. Dann sind $U \cap V$ und $U + W := \{u + w \mid u \in U, w \in W\}$ Unterräume von V.

Definition 2.7. Sei V ein K-Vektorraum und $M \subseteq V$. Die Menge $lin(M) = span(M) := \{\lambda_1 \boldsymbol{m}_1 + \dots + \lambda_n \boldsymbol{m}_n \mid \lambda_i \in K, \boldsymbol{m}_i \in M\}$ heißt $\underline{lineare\ H\"{u}lle}$ (oder $\underline{lineare\ Aufspann}$) von M in V. Falls $M = \emptyset$ setzen wir $lin(M) = \{\boldsymbol{0}\}$. M heißt $\underline{Erzeugendensystem\ von\ lin}(M)$.

Beweis [2, 16]

Proposition 2.3. lin(M) ist der kleinste Unterraum von V, der M enthält.

Definition 2.8. Eine Menge $M \subseteq V$ heißt Erzeugendensystem von V, falls lin(M) = V. Eine Familie in V heißt <u>Basis</u>, falls sie ein linear unabhängiges Erzeugendensystem bildet.

Definition 2.9. Ein Vektorraum heißt <u>endlich erzeugt</u>, falls er ein endliches Erzeugendensystem besitzt.

Satz 2.1. Sei $V \neq \{0\}$ ein K-Vektorraum und $(v_i)_{i \in I}$ eine Familie von Vektoren aus V. Dann sind die folgenden Aussagen äquivalent:

- $(v_i)_{i \in I}$ ist eine Basis von V.
- $(v_i)_{i \in I}$ ist ein unverkürzbares Erzeugendensystem von V, daher $\forall J \subset I$ ist $(v_j)_{j \in J}$ kein Erzeugendensystem von V.
- $(v_i)_{i\in I}$ ist eine unverlängerbare linear unabhängige Familie, daher $\forall J'\supset I$ ist $(v_j)_{j\in J'}$ kein Erzeugendensystem von V.
- $(v_i)_{i\in I}$ ist ein Erzeugendensystem von V, aus dem sich jeder Vektor aus V eindeutig linear kombinieren lässt.

Folgerung 2.1 (Basisauswahlsatz). Sei V ein K-Vektorraum und v_1, \ldots, v_n ein (endliches) Erzeugendensystem von V. Dann existiert eine Teilmenge $J \subseteq \{1, \ldots, n\}$, sodass $(v_j)_{j \in J}$ eine Basis von V ist.

Bemerkung 2.1. Jeder Vektorraum besitzt eine Basis, insbesondere endlich erzeugte.

Lemma 2.2 (Austauschlemma). Sei (v_1, \ldots, v_r) eine Basis von V und $w = \lambda_1 v_1 + \cdots + \lambda_r v_r \in V$. Ist $k \in \{1, \ldots, r\}$ mit $\lambda_k \neq 0$, dann ist $(v_1, \ldots, v_{k-1}, w, v_{k+1}, \ldots, v_r)$

Satz 2.2 (Austauschsatz). Sei (v_1, \ldots, v_r) eine Basis von V und sei (w_1, \ldots, w_n) eine linear unabhängige Menge. Dann gilt $n \leq r$ und es gibt Indizes $i_1, \ldots, i_{r-n} \in \{1, \ldots, r\}$, sodass

$$(w_1,\ldots,w_n,v_i,\ldots,v_{i_{r-n}})$$

wieder eine Basis ist.

Folgerung 2.2. Jede Basis von V ist endlich.

Folgerung 2.3. Jede linear unabhängige Familie in V lässt sich zu einer Basis fortsetzen.

Definition 2.10. Ist V ein K-Vektorraum, so bezeichnet

$$\dim_K V := \begin{cases} r, & \text{falls } V \text{ eine Basis der L\"{a}nge } r \text{ besitzt.} \\ \infty, & \text{sonst.} \end{cases}$$

die Dimension von V über K.

Beweis [2, 27]

Proposition 2.4. Sei V ein K-Vektorraum mit $\dim V < \infty$ und U < V ein echter Teilraum. Dass gilt $\dim_K U < \dim_K V$.

3 Lineare Abbildungen

Seien V und W Vektorräume über demselben Körper K.

Definition 3.1. Eine Abbildung $f: V \mapsto W$ heißt <u>linear</u>, falls gilt

$$f(\lambda u + \mu v) = \lambda f(u) + \mu f(v) \quad \forall \ u, v \in V, \lambda, \mu \in K.$$

Definition 3.2. Sei $f: V \mapsto W$ eine lineare Abbildung.

• Die Menge

$$\operatorname{Im} f = \{ f(v) \mid v \in V \} \subseteq W$$

heißt Bild von f.

• Die Menge

$$\operatorname{Ker} f = \{ v \in V \mid f(v) = 0 \} \subseteq V$$

heißt <u>Kern</u> von f.

Beispiel [2, 28]

Proposition 3.1. Eine lineare Abbildung $f: V \mapsto W$ ist <u>injektiv</u> genau dann wenn Ker f = 0 ist. Außerdem gilt $\forall u, v \in V$:

$$f(u) = f(v) \iff u - v \in \operatorname{Ker} f$$

Beweis [2, 29]

Satz 3.1 (Dimensionsformel). Sei $f: V \mapsto W$ eine lineare Abbildung. Dann gilt

$$\dim \operatorname{Ker} f + \dim \operatorname{Im} f = \dim V.$$

Beweis [2, 29]

Satz 3.2. Sei $f: V \mapsto W$ eine lineare Abbildung und dim $V < \infty$. Äquivalent sind:

- f ist injektiv.
- f ist surjektiv.
- f ist bijektiv.

Bemerkung 3.1. Für unendlich-dimensionale Vektorräume existieren stets injektive lineare Abbildungen, die nicht surjektiv sind und surjektive Abbildungen, die nicht injektiv sind.

Definition 3.3. Sei $f: V \mapsto W$ eine lineare Abbildung.

$$rank_K f = \dim_K f(V) = \dim_K \operatorname{Im} f$$

heißt Rang von füber K.

Proposition 3.2. Sei $(v_1, ..., v_n)$ eine Basis von V und $F: V \mapsto W$ eine lineare Abbildung. Es gilt:

- $lin(f(v), \ldots, f(v_n)) = \operatorname{Im} f$
- rank f ist die maximale Anzahl linear unabhängiger Vektoren von $(f(v_1), \ldots, f(v_n))$
- f $surjektiv \Leftrightarrow rank <math>f = \dim W$
- f injektiv $\Leftrightarrow (f(v_1), \dots, f(v_n))$ linear unabhängig

• f bijektiv $\Leftrightarrow (f(v_1), \dots, f(v_n))$ Basis von W

Beweis [2, 32]

Satz 3.3 (Hauptsatz über lineare Abbildungen). Seien V, W K-Vektorräume, (v_1, \ldots, v_n) Basis von V und $w_1, \ldots, w_n \in W$. Dann existiert eine eindeutig bestimmte lineare Abbildung $f: V \mapsto W$ mit der Eigenschaft $f(v_i) = w_i \, \forall i$.

Definition 3.4.

- Eine bijektive K-lineare Abbildung heißt K-Vektorraum-Isomorphismus.
- Zwei K-Vektorräume heißen <u>isomorph</u>, falls ein K-Vektorraum-Isomorphismus von V nach W existiert.

Bemerkung 3.2. Wenn $f: V \mapsto W$ ein Isomorphismus ist, so ist die Umkehrabbildung $f^{-1}: W \mapsto V$ definiert und ebenfalls bijektiv.

Folgerung 3.1. Sei V ein n-dimensionaler K-Vektorraum von endlicher Dimension. Dann ist V isomorph zu K^n .

3.1 Matrizen

Definition 3.5. Sei X eine Menge und $m, n \in \mathbb{N} \setminus 0$. Eine $m \times n$ <u>Matrix</u> M mit Koeffizienten in X ist eine Abbildung

$$M: \{1, ..., m\} \times \{1, ..., n\} \mapsto X.$$

Üblicherweise schreibt man eine Matrix

$$M: \{1, ..., m\} \times \{1, ..., n\} \mapsto X.$$

als rechteckiges Schema

$$\begin{pmatrix} M_{1,1} & \dots & M_{1,n} \\ \vdots & M_{i,j} & \vdots \\ M_{m,1} & \dots & M_{m,n} \end{pmatrix}$$

Satz 3.4. Seien V, W Vektorräume über K und $f: V \mapsto W$ eine lineare Abbildung. Seien $B = (v_1, \ldots, v_m)$ und $C = (w_1, \ldots, w_n)$ Basen von V beziehungsweise W. Für jedes $i \in \{1, \ldots, m\}$ existieren eindeutig bestimmte $\mu_{i1}, \ldots, \mu_{in} \in K$ mit

$$f(v_i) = \mu_{i_1} w_1 + \dots + \mu_{i_n} w_n$$

Definition 3.6. Die Matrix

$$M_{B,C}(f): \{1,\ldots,m\} \times \{1,\ldots,n\} \mapsto K$$

$$(i,j) \mapsto \mu_{i,j}$$

heißt Matrix von f bezüglich B und C.

3.2 Strukturen linearer Abbildungen

Definition 3.7. Seien V und W K-Vektorräume. Die Menge

$$\operatorname{Hom}(V, W) = \{ \phi : V \mapsto W \mid \phi \ linear \}$$

enthält alle Homomorphismen von V nach W.

Proposition 3.3. Der Vektorraum Hom(V, W) ist Untervektorraum des K-Vektorraumes aller Abbildungen von V nach W.

Beweis [2, 36]

Proposition 3.4. Seien U, V, W K-Vektorräume.

- Sind $\phi: U \mapsto V$ und $\psi: V \mapsto W$ linear, so auch $\psi \circ \phi: U \mapsto W$.
- id : $V \mapsto V$ ist linear.
- Ist $\phi: U \mapsto V$ bijektiv und linear, so ist auch ϕ^{-1} linear.

Proposition 3.5. Seien $\phi_1, \phi_2 : U \mapsto V$ und $\psi_1, \psi_2 : V \mapsto W$ lineare Abbildungen. Dann gilt

- $\psi \circ (\phi_1 + \phi_2) = \psi_1 \circ \phi_1 + \psi_1 \circ \phi_2$
- $(\psi_1 + \psi_2) \circ \phi_1 = \psi_1 \circ \phi_1 + \psi_2 \circ \phi_1$
- $(\lambda \psi_1) \circ \phi_1 = \lambda(\psi_1 \circ \phi_1) = \psi_1 \circ (\lambda \phi_1)$

Satz 3.5. End(V) = Hom(V, V) ist mit den Verknüpfungen $(+, \circ)$ und 1 ein Ring.

Satz 3.6 (General linear group). $GL(V) = \{\phi : V \mapsto V \mid \phi \text{ linear und bijektiv}\}$ ist mit der Verknüpfung \circ eine Gruppe.

3.3 Strukturen von Matrizen

Notation 3.1. Sei $A: \{1, \ldots, m\} \times \{1, \ldots, n\} \mapsto K; (i, j) \mapsto a_{ij}$ gegeben. Schreibe $A = (A_{ij}) \in M_{m \times n}(K)$.

Definition 3.8 (Komponentenweise Verknüpfungen). Sei $A = (a_{ij}), B = (b_{ij}) \in M_{m \times n}(K)$. Dann ist die Addition

$$A + B = (a_{ij} + b_{ij}) \in M_{m \times n}(K)$$

und Skalarmultiplikation

$$\lambda A = (\lambda a_{ij})$$

definiert.

Definition 3.9 (Matrixmultiplikation). Das Produkt zweier Matrizen $C = A \cdot B$ ist definiert durch

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}.$$

Faustregel: "Zeile mal Spalte"

Proposition 3.6. Seien $A, A_1, A_2 \in M_{m \times n}(K)$ sowie $B, B_1, B_2 \in M_{n \times k}(K)$. Dann gilt

•
$$A \cdot (B_1 + B_2) = A \cdot B_1 + A \cdot B_2$$

- $(A_1 + A_2) \cdot B = A_1 \cdot B + A_2 \cdot B$
- $(\lambda A) \cdot B = \lambda (A \cdot B) = A \cdot (\lambda B)$

Satz 3.7. $M_n(K) := M_{n \times n}(K)$ ist mit den Verknüpfungen $(+, \circ)$ ein Ring mit 1 und eine K-Algebra.

Definition 3.10. Eine Matrix A heißt <u>invertierbar</u>, falls eine Matrix A^{-1} existiert, sodass

$$AA^{-1} = A^{-1}A = E_n.$$

Satz 3.8 (General linear group). $GL_n(K) = \{A \in M_n(K) \mid A \text{ invertierbar}\}$ ist eine Gruppe.

Definition 3.11. Sei K ein $K\"{o}rper$, $A=(a_{ij})\in K^{m\times n}$ eine Matrix sowie $x=\begin{pmatrix} x_1\\ \vdots\\ x_n \end{pmatrix}$

ein Vektor. Dann ist die lineare Abbildung $\phi_A: K^n \mapsto K^m, x \mapsto Ax$ über die Matrix A repräsentiert:

$$Ax = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \dots & a_{mn} \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} a_{11}x_1 + \dots + a_{1n}x_n \\ \vdots \\ a_{m1}x_1 + \dots + a_{mn}x_n \end{pmatrix} \in K^m$$

Bemerkung 3.3. Es gilt für alle $i \in \{1, ..., n\}$:

$$\phi_A(oldsymbol{e}_i) = Aoldsymbol{e}_i = egin{pmatrix} A_{1i} \ dots \ A_{mi} \end{pmatrix} = i ext{-}te \; Spalte \; von \; A$$

Die Spalten von A sind die Bilder der Standardbasisvektoren unter der Abbildung ϕ_A .

Bemerkung 3.4.

$$\operatorname{Im} \phi_A = \phi_A(K^n) = \{ \boldsymbol{b} \in K^m \mid \exists \boldsymbol{x} \in K^n : A\boldsymbol{x} = \boldsymbol{b} \}$$
$$= \operatorname{lin}(\phi_A(\boldsymbol{e}_i), \dots, \phi_A(\boldsymbol{e}_n))$$

= Unterraum von K^m , der von den Spalten von A aufgespannt wird. =: Spaltenraum von A

3.4 Rangberechnung

Definition 3.12 (Rang einer Matrix). Der Rang einer Matrix ist definiert als

$$\operatorname{rank}_K A := \operatorname{rank}_K \phi_A = \dim_K \operatorname{lin}(\phi_A(\boldsymbol{e}_i), \dots, \phi_A(\boldsymbol{e}_n)).$$

Beispiel [2, 41]

Satz 3.9. Der Rang einer Matrix A entspricht stets dem Rang einer Zeilenstufenform aus dem Gauß-Jordan-Agorithmus angewendet auf Ax = 0

Definition 3.13. Sei $A = (a_{ij}) \in K^{m \times n}$. Die Matrix

$$A^{T} = \begin{pmatrix} a_{11} & a_{21} & \dots & a_{m1} \\ a_{12} & a_{22} & \ddots & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ a_{1n} & a_{2n} & \dots & a_{mn} \end{pmatrix} \in K^{n \times m}$$

heißt Transponierte von A.

Proposition 3.7. Sei $A \in K^{l \times m}$, $B \in K^{m \times n}$. Dann ist

$$(AB)^T = B^T A^T.$$

Bemerkung 3.5. Der Zeilenrang einer Matrix ist definiert als der Rang von A^T .

Folgerung 3.2. Für $A \in K^{m \times n}$ ist der Zeilenrang von A gleich dem Rang von A.

3.5 Darstellung linearer Abbildungen als Matrizen

Proposition 3.8. Die Abbildung

$$\phi: K^{m \times n} \mapsto \operatorname{Hom}(K^n, K^m); A \mapsto \phi_A$$

ist ein linearer Isomorphismus. Die Abbildung ϕ^{-1} ordnet einer linearen Abbildung ϕ : $K^n \mapsto K^m$ die Matrix $[\phi]$ von ϕ bezüglich der Standardbasen von K^n und K^m zu.

Folgerung 3.3. $dim_K \operatorname{Hom}(K^m, K^n) = m \cdot n$

Proposition 3.9. .

- $\forall A \in K^{l \times m}, B \in K^{m \times n} : \phi_A \circ \phi_B = \phi_{AB}$
- $\forall \ \psi \in \operatorname{Hom}(K^l, K^m), \phi \in \operatorname{Hom}(K^m, K^n)$:

$$[\phi \circ \psi] = [\phi] \cdot [\psi]$$

• Die Abbildung

$$\Phi: K^{n \times n} \mapsto \operatorname{End}(K^n): A \mapsto \phi_A$$

ist ein Ring-Isomorphismus.

Lemma 3.1. Sei V ein K-Vektorraum mit dim V = n und sei $B = (\mathbf{b}_1, \dots, \mathbf{b}_n)$ eine Basis von V. Dann lässt sich $\mathbf{v} \in V$ eindeutig schreiben als

$$v = \lambda_1 b_1 + \cdots + \lambda_n b_n.$$

Der Koordinatenvektor von v bezüglich B ist definiert als

$$[v]_B := egin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_n \end{pmatrix} \in K^n.$$

Die Abbildung

$$k_B: V \mapsto K^n; v \mapsto [v]_R$$

ist ein K-Vektorraum-Isomorphismus, weil das Bild von B wegen $[\boldsymbol{b}_i] = \begin{pmatrix} 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{pmatrix} = \boldsymbol{e}_i$ eine

Basis von K^n ist.

Lemma 3.2. Seien V, W K-Vektorräume und $f: V \mapsto W$ linear. Zu Basen $B = (\boldsymbol{b}_1, \ldots, \boldsymbol{b}_n)$ und $C = (\boldsymbol{c}_1, \ldots, \boldsymbol{c}_n)$ von V beziehungsweise W ist

$$[f]_C^B := M_{B,C}(f) = \begin{pmatrix} | & | & | \\ [f(b_i)]_C & \dots & [f(b_n)]_C \end{pmatrix}$$

die Matrix von f bezüglich B und C.

Beweis [2, S. 46]

Proposition 3.10. Für alle $v \in V$ gilt

$$[f]_C^B [v]_B = [f(v)]_C$$
.

Definition 3.14. Für jede lineare Abbildung $f: V \mapsto W$ existiert zu gegebenen Basen B und C eine Matrix $[f]_C^B$. Wir definieren die Abbildung

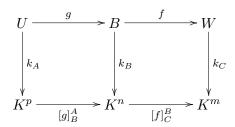
$$\Phi_C^B : \operatorname{Hom}(V, W) \mapsto K^{m \times n}; f \mapsto [f]_C^B.$$

Proposition 3.11. $\Phi_C^B : \operatorname{Hom}(V, W) \mapsto K^{m \times n}$ ist ein linearer Isomorphismus.

Proposition 3.12. Seien U, V, W K-Vektorräume mit Basen A, B, C. Für die Abbildungen $g: U \mapsto V$ und $f: V \mapsto W$ gilt dann

$$[f \circ g]_C^A = [f]_C^B \cdot [g]_B^A.$$

Das Diagram



ist kommutativ.

Beispiel [2, S. 48]

Definition 3.15 (Basiswechsel). Seien $B = (\mathbf{b}_1, \dots, \mathbf{b}_n)$ und $B' = (\mathbf{b}'_1, \dots, \mathbf{b}'_n)$ Basen des K-Vektorraums V. Jedes $v \in V$ lässt sich bezüglich B und B' darstellen:

$$[oldsymbol{v}]_B := egin{pmatrix} \lambda_1 \ dots \ \lambda_n \end{pmatrix} \quad [oldsymbol{v}]_B' := egin{pmatrix} \lambda_1' \ dots \ \lambda_n' \end{pmatrix}$$

Für die Vektoren b'_1, \ldots, b'_i existiert damit folgende Darstellung:

$$[m{b'_i}]_B := egin{pmatrix} s_{1i} \ dots \ s_{ni} \end{pmatrix} \quad [m{b'_i}]_{B'} := egin{pmatrix} 0 \ dots \ 1 \ dots \ 0 \end{pmatrix} \leftarrow i\text{-te Stelle}$$

Die Transformationsmatrix des Basiswechsels von B' nach B ist dann definiert als

$$S = \begin{pmatrix} s_{11} & \dots & s_{1n} \\ \vdots & & \vdots \\ s_{n1} & \dots & s_{nn} \end{pmatrix} = [\mathrm{id}_v]_B^{B'}.$$

Proposition 3.13. Sei $f: V \mapsto W$ linear. Außerdem seien B, B' Basen von V und C, C' Basen von W. Setze $S = [\mathrm{id}_v]_B^{B'}$ und $R = [\mathrm{id}_w]_C^{C'}$. Dann gilt

$$[f]_{C'}^{B'} = R^{-1} \cdot [f]_C^B \cdot S$$

und

$$[f]_C^B = R \cdot [f]_{C'}^{B'} \cdot S^{-1}.$$

3.6 Gleichungssysteme

Sei das folgende lineare Gleichungssystem über dem Körper K gegeben:

$$a_{11}x_1 + \dots + a_{1n}x_n = b_1$$

$$\vdots$$

$$a_{m1}x_1 + \dots + a_{mn}x_n = b_n$$

Alternativ kann das Gleichungssystem auch als

$$A\mathbf{x} = \mathbf{b}$$
 (*)

mit

$$A = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & & \vdots \\ a_{m1} & \dots & a_{mn} \end{pmatrix} \in K^{m \times n}, \quad \mathbf{b} = \begin{pmatrix} b_1 \\ \vdots \\ b_m \end{pmatrix} \in K^m, \quad \mathbf{x} = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in K^n.$$

Das zugehörige homogene Gleichungssystem lässt sich dann schreiben als $A\mathbf{x} = \mathbf{0}$ (**).

Proposition 3.14. Die Lösungen von (**) bilden einen Untervektorraum U von K^n . Dabei ist dim U = n - rank A =: k. Eine Basis (u_1, \ldots, u_k) von U heißt System von Fundamentallösungen von (**). Jede Lösung von (**) ist Linearkombination der Fundamentallösungen.

Proposition 3.15 (Existenz von Lösungen). .

- Das homogene System (**) hat stets die triviale Lösung x = 0.
- Das inhomogene System (*) hat mindestens eine Lösung

 \Leftrightarrow $b \in Spaltenraum von A$

$$\Leftrightarrow \operatorname{rank}(A) = \operatorname{rank}(A|b)$$

mit

$$(A|b) = \begin{pmatrix} a_{11} & \dots & a_{1n} & b_1 \\ \vdots & & \vdots & \vdots \\ a_{m1} & \dots & a_{mn} & b_m \end{pmatrix}$$

Proposition 3.16. Angenommen das inhomogene System (*) hat mindestens eine Lösung $x_0 \in K^n$. Dann ist

$$x_0 + U = \{x_0 + \lambda_1 u_1 + \dots + \lambda_k u_k \mid \lambda_i \in K\}$$

die Menge aller Lösungen von (*).

Definition 3.16. Sei V ein K-Vektorraum, $U \leq V, x \in V$. Dann heißt die Menge x + U affiner Unterraum von V.

Proposition 3.17. Sei nun m = n, daher die Matrix $A \in K^{n \times n}$ quadratisch. Äquivalent sind

- Das lineare Gleichungssystem Ax = b hat eine eindeutige Lösung.
- A ist invertierbar.
- $\operatorname{rank} A = n$

4 Determinanten

Definition 4.1. Eine Determinante ist eine Abbildung det : $K^{n \times n} \mapsto K$ mit den folgenden Eigenschaften:

- $\det(E_n) = 1$
- det(AB) = det(A) det(B)
- $\det(A^T) = \det(A)$
- $A invertierbar \Leftrightarrow \det(A) \neq 0$

Definition 4.2. Eine Abbildung $F: K^n \times \cdots \times K^n \mapsto K$ (für $n \ge 1$) heißt

• Multilinearform auf K^n , falls gilt $\forall i \ \forall v_k \ \forall \lambda, \mu \in K \ \forall x, y \ inV$:

$$F(v_{ij}, \dots, v_{i-1}, \lambda x + \mu y, v_{i+1}, \dots, v_n)$$

= $\lambda F(v_{ij}, \dots, v_{i-1}, x, v_{i+1}, \dots, v_n) + \mu F(v_{ij}, \dots, v_{i-1}, y, v_{i+1}, \dots, v_n)$

• <u>alternierende Multilinearform</u> auf Kⁿ, falls außer der Bedingung für Multilinearformen zusätzlich gilt:

$$F(v_1,\ldots,v_n)=0$$
 falls $v_i=v_j$ für $i\neq j$

• normierte alternierende Multilinearform auf Kⁿ, falls außer der Bedingung für alternierende Multilinearformen zusätzlich gilt:

$$F(e_1,\ldots,e_n)=1$$

Beweis [2, S. 54]

Lemma 4.1. Sei $F: K^n \times K^n \mapsto K$ eine alternierende Multilinearform und $v_1, \ldots, v_n \in K^n$. Dann gilt $F(v_1, \ldots, v_n) = 0$, falls (v_1, \ldots, v_n) linear abhängig sind.

Satz 4.1. Sei $F: K^n \times \cdots \times K^n \mapsto K$ eine alternierende Multilinearform mit $F(e_1, \dots, e_n) = 0$. Dann folgt $F \equiv 0$.

Folgerung 4.1. Seien $F,G:K^n\times\cdots\times K^n\mapsto K$ alternierende Linearformen mit $F(e_1,\ldots,e_n)=G(e_1,\ldots,e_n)$. Dann folgt dass F identisch G ist. Insbesondere gibt es höchstens eine Determinantenform auf K^n .

4.1 Konstruktion der Determinantenform auf K^n

Satz 4.2. Für die K^1 und K^2 Matrizen gelten folgende MLF:

$$D_1: K \longrightarrow K: x \mapsto x$$

$$D_2: K \longrightarrow K: \left(\begin{pmatrix} u_1 \\ u_2 \end{pmatrix}, \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} \right) \mapsto u_1 v_2 - u_2 v_1$$

Satz 4.3 (Laplace-Entwicklung). Sei $A \in K^{n \times n}$ eine Matrix. Für die Determinante von A gilt dann:

$$D_n(A) = \sum_{i=1}^{n} (-1)^{i+j} a_{ij} D_{n-1}(A_{ij})$$

für ein beliebiges $i \in \{1, ..., n\}$. Dabei ist $A_{ij} \in K^{(n-1)\times(n-1)}$ durch Streichung der i-ten Zeile und der j-ten Spalte aus A hervorgegangen.

Notation 4.1. Statt $D_n(A) = D_n((a_{ij}))$ schreiben wir auch $|a_{ij}|$ beziehungsweise $D_n(a_1, \ldots, a_n)$ für $A = (a_1, \ldots, a_n)$.

Lemma 4.2. Die Abbildung $D_n: K^{n \times n} \mapsto K$ ist multilinear, alternierend und normiert.

Definition 4.3. Die Abbildung det $= D_n : K^{n \times n} \mapsto K$ heißt <u>Determinante</u> auf K^n .

4.2 Eigenschaften der Determinante

Proposition 4.1. Für $A \in K^{n \times n}$ gilt $det(A^T) = det(A)$.

Proposition 4.2. Seien $A, B \in K^{n \times n}$. Dann gilt

- $det(AB) = det(A) \cdot det(B)$
- Falls A invertierbar ist, gilt $\det(A) \neq 0$ und $\det(A^{-1}) = \frac{1}{\det(A)} = [\det(A)]^{-1}$.

Proposition 4.3. Sei $A \in K^{n \times n}$. Dann sind folgende Aussagen äquivalent:

- $det(A) \neq 0$
- $A \in GL_n(K)$, daher A ist invertierbar.
- $\forall b \in K^n$ ist das lineare Gleichungssystem Ax = b eindeutig lösbar.
- Die Spalten von A sind linear unabhängig.
- Die Zeilen von A sind linear unabhängig.
- $\operatorname{rank} A = n$

Definition 4.4. Zwei Matrizen $A, B \in K^{n \times n}$ heißen <u>ähnlich</u>, falls ein $S \in GL_n(K)$ existiert mit $B = S^{-1}AS$.

Proposition 4.4. Ähnliche Matrizen haben die selbe Determinante. Insbesondere ist damit die Determinante eines beliebigen linearen Endomorphismus $\phi: K^n \mapsto K^n$ unabhängig von der Wahl der Basen eindeutig definiert.

Satz 4.4. Sei $A = (a_{ij}) \in K^{(n \times n)}$. Es gilt

$$det(A) = \sum_{\sigma \in Sym\{1,\dots,n\}} (-1)^{sgn(\sigma)} \cdot a_{1\sigma(1)} \cdot \dots \cdot a_{n\sigma(n)}$$

Dabei ist σ eine Permutation der Zahlen $\{1, \ldots, n\}$.

$$sgn(\sigma) := Anzahl \ der \ Paare \ (i,j) \ mit \ 1 \le i \le j \le n \ und \ \sigma(i) > \sigma(j)$$

 $sgn(\sigma)$ gibt die Zahl der Vertauschungen von Zweiertupeln an, die benötigt werden, um die Permutation σ zu erzeugen.

Satz 4.5. Sei $A = (a_{ij}) \in K^{n \times n}$ eine <u>obere Dreiecksmatrix</u>, daher $a_{ij} = 0 \ \forall \ i > j$. Dann gilt

$$\det(A) = a_{11} \cdot a_{22} \cdot \dots \cdot a_{nn}.$$

Die selbe Aussage gilt auch für untere Dreiecksmatrizen.

5 Euklidische und unitäre Räume

Definition 5.1. Sei K ein beliebiger Körper und V ein K-Vektorraum. Eine Abbildung $f: V \times V \mapsto K$ heißt K-Bilinearform, falls gilt $\forall \alpha, \beta \in K \ \forall u, u', v'v' \in V$:

$$f(\alpha u + \beta u', v) = \alpha f(u, v) + \beta f(u', v)$$

und

$$f(u, \alpha v + \beta v') = \alpha f(u, v) + \beta f(u, v')$$

Definition 5.2. Die K-Bilinearform f heißt <u>ausgeartet</u>, falls ein $u \neq 0$ existiert mit der Eigenschaft, dass $\forall v \in V$ gilt: f(u, v) = 0

Definition 5.3. Das Standardskalarprodukt ist die K-Bilinearform $f: V \times V \mapsto K$ mit

$$f(u, v) = u^T v = u_1 v_1 + \dots + u_d v_d.$$

Bemerkung 5.1. Das Standardskalarprodukt ist symmetrisch, das heißt $\forall u, v \in V$ gilt

$$f(u,v) = f(v,u).$$

Definition 5.4. Im Fall $K = \mathbb{R}$ heißt das Standardskalarprodukt <u>Euklidisches</u> Skalarprodukt. Notation: $\langle u, v \rangle = u^T v$

Proposition 5.1. Das euklidische Skalarprodukt ist \mathbb{R} -bilinear, symmetrisch und <u>positiv</u> definit, das heißt $\forall v \in \mathbb{R}^d$ gilt

- \bullet $< v, v > \ge 0$
- \bullet $\langle v, v \rangle = 0 \Leftrightarrow v = 0$

Definition 5.5. Die euklidische Norm eines Vektors $v \in \mathbb{R}^d$ wird definiert als

$$||v|| := \sqrt{\langle v, v \rangle}.$$

Proposition 5.2. Auf den komplexen Zahlen ist die Konjugation

$$\overline{z}:z=x+iy\mapsto \overline{z}:=x-iy$$

ein Körperautomorphismus mit der Eigenschaft

$$\overline{(\bar{z})} = z \ \forall \ z \in \mathbb{C}.$$

Definition 5.6. Das hermitesche Skalarprodukt auf \mathbb{C}^d ist definiert durch

$$\langle z, w \rangle := z^T \overline{w} = z_1 \overline{w}_1 + \dots + z_d \overline{w}_d$$

Proposition 5.3. Das hermitesche Skalarprodukt ist \mathbb{C} -semi-bilinear, hermitesch und positiv definit, das heißt es gilt $\forall \alpha, \beta \in \mathbb{C} \ \forall z, z'w, w' \in \mathbb{C}^d$:

- $\bullet < \alpha z + \beta z', w > = \alpha < z, w > +\beta < z', w >$
- $\langle z, \alpha w + \beta w' \rangle = \overline{\alpha} \langle z, w \rangle + \overline{\beta} \langle z, w' \rangle$
- \bullet $\langle z, w \rangle = \overline{\langle w, z \rangle}$
- \bullet $< z, z > \ge 0$
- \bullet $\langle z, z \rangle = 0 \Leftrightarrow z = 0$

Definition 5.7. Sei V ein \mathbb{R} -Vektorraum mit einer symmetrischen, positiv definiten \mathbb{R} -Bilinearform $<\cdot,\cdot>: V\times V\mapsto \mathbb{R}$. Dann heißt $(V,<\cdot,\cdot>)$ <u>euklidischer Raum</u>.

Definition 5.8. Sei V ein \mathbb{C} -Vektorraum mit einer hermiteschen, positiv definiten \mathbb{C} -Semi-Bilinearform $\langle \cdot, \cdot \rangle : V \times V \mapsto \mathbb{C}$. Dann hei βt $(V, \langle \cdot, \cdot \rangle)$ unitärer Raum.

Bemerkung 5.2. Sei $(V, <\cdot, \cdot>)$ ein unitärer Raum. Insbesondere ist V ein komplexer Vektorraum mit Skalarmultiplikation

$$\mathbb{C} \times V \mapsto V : (\lambda, v) \mapsto \lambda \cdot v.$$

Diese lässt sich einschränken auf reelle Skalare

$$\mathbb{R} \times V \mapsto V : (\lambda, v) \mapsto \lambda \cdot v.$$

und man erhält einen reellen Vektorraum $V_{\mathbb{R}}$.

Weiter ist dann

$$(v,w) := \text{Re}(\langle v,w \rangle) = \frac{1}{2}(\langle v,w \rangle + \langle w,v \rangle) = \frac{1}{2}(\langle v,w \rangle + \overline{\langle v,w \rangle})$$

eine \mathbb{R} -Bilinearform auf $V_{\mathbb{R}}$, die symmetrisch und positiv definit ist, daher $(V_{\mathbb{R}}, <\cdot, \cdot>)$ ist ein euklidischer Raum.

Definition 5.9. Sei $(V, <\cdot, \cdot>)$ ein euklidischer oder unitäter Raum. Dann definiert

$$||v|| := \sqrt{\langle v, v \rangle}$$

die <u>Norm</u> von $v \in V$. Ferner heißen $v, w \in V$ <u>orthogonal</u>, falls gilt $\langle v, w \rangle = 0$. Vektoren der Norm 1 heißen Einheitsvektoren.

Bemerkung 5.3. Für $\alpha \in K$ und $v \in V$ gilt

$$||\alpha v|| = \sqrt{<\alpha v, \alpha v>} = \sqrt{\alpha \overline{\alpha}} \sqrt{< v, v>} = |\alpha| \cdot ||v||.$$

5.1 Geometrische Eigenschaften euklidischer und unitärer Räume

Bemerkung 5.4 (Polarisierungsidentitäten).

• Im euklidischen Fall:

$$\langle x, y \rangle = \frac{1}{4} \cdot (||x + y||^2 - ||x - y||^2)$$

• Im unitären Fall:

$$\langle x, y \rangle = \frac{1}{4} \cdot (||x + y||^2 - ||x - y||^2 + i||x + iy||^2 - i||x - iy||^2)$$

Sowohl im euklidischen als auch im unitären Raum ist das Skalarproduckt durch die Norm bestimmt.

Satz 5.1 (Satz des Pythagoras).

$$x \perp y \implies ||x||^2 + ||y||^2 = ||x + y||^2$$

Satz 5.2 (Ungleichung von Cauchy-Schwarz).

$$| < x, y > | < ||x|| \cdot ||y||$$

Definition 5.10. Sei $(V, <\cdot, \cdot>)$ ein euklidischer oder unitärer Raum. Zu $x, y \in V \setminus \{0\}$ sei der <u>Winkel</u> $\gamma \in [0, \pi]$ definiert durch

$$\cos \gamma = \frac{\text{Re} \langle x, y \rangle}{||x|| \cdot ||y||}.$$

6 Metrische Räume

Definition 6.1. Eine Menge M mit einer Abbildung

$$d: MxM \mapsto \mathbb{R}_{\geq 0} \ (\underline{Metrik})$$

heißt metrischer Raum, falls gilt $\forall x, y, z \in M$:

- 1. d(x,y) = d(y,x) (Symmetrie)
- 2. $d(x,y) \ge 0$ $d(x,y) = 0 \Leftrightarrow x = y \text{ (Definitheit)}$
- 3. $d(x,z) \le d(x,y) + d(y,z)$ (Dreiecksungleichung)

Beweis [2, S. 66]

Satz 6.1. Sei $(V, <\cdot, \cdot>)$ ein euklidischer oder unitärer Raum. Dann definiert

$$d(x,y) := ||x-y|| = \sqrt{\langle x-y, x-y \rangle}$$

eine Metrik auf V.

Satz 6.2. Sei $(V, \langle \cdot, \cdot \rangle)$ ein euklidischer oder unitärer Raum.

- $||x+y|| = ||x|| + ||y|| \Leftrightarrow \exists \alpha \in \mathbb{R} : y = \alpha x$
- $|\langle x, y \rangle| = ||x|| \cdot ||y|| \Leftrightarrow x, y \text{ linear abhängig}$

Satz 6.3. Sei $(V, <\cdot, \cdot>)$ ein euklidischer Raum.

- $\forall x, y \in V \exists ! m_{x,y} \in V :$ $D(x, m_{x,y}) = d(y, m_{x,y}) = \frac{1}{2}d(x, y) \text{ (Mittelpunkt)}$
- Sei $\phi: V \mapsto V$ eine Abbildung mit $\phi(0) = 0$ und $d(\phi(x), \phi(y)) = d(x, y)$ für alle $x, y \in V$ (abstandserhaltend). Dann gilt: ϕ ist linear.

6.1 Orthonormalbasen

Definition 6.2. Eine Familie $(v_1, \ldots, v_m) \in V \setminus \{0\}$ heißt Orthogonalsystem, falls gilt

$$v_i \perp v_j$$
 für $i \neq j$.

Gilt zusätzlich $||v_i|| = 1$, dann heißt das System <u>Orthonormalsystem</u>. Ein Orthonormalsystem, das eine Basis von V ist, heißt <u>Orthonormalbasis</u>.

Beispiel [2, S. 68]

Lemma 6.1. Jedes Orthogonalsystem (v_1, \ldots, v_m) ist linear unabhängig.

Beweis [2, S. 68]

Beispiel [2, S. 69]

Bemerkung 6.1 (Koordinaten bezüglich Orthonormalbasen). Sei v_1, \ldots, v_n eine Orthonormalbasis von V. Dann lässt sich ein beliebiges $v \in V$ eindeutig darstellen als

$$v = \lambda_1 v_1 + \cdots + \lambda_n v_n$$
, $\lambda_i \in K$.

$$v = \langle v, v_1 \rangle \cdot v_1 + \dots + \langle v, v_n \rangle \cdot v_n$$

6.1.1 Orthonormalisierungsverfahren nach Gram-Schmidt

Sei (b_1, \ldots, b_m) eine linear unabhängige Familie in V. Es gilt $\dim_K(b_1, \ldots, b_m) = m$. Im Folgenden konstruieren wir eine Orthonormalbasis für $U := \lim(b_1, \ldots, b_m)$:

$$\begin{array}{lll} u_1 := b_1 & v_1 := \frac{u_1}{||u_1||} \\ u_2 := b_2 - < b_2, v_1 > \cdot v_1 & v_2 := \frac{u_2}{||u_2||} \\ u_3 := b_3 - < b_3, v_1 > \cdot v_1 - < b_3, v_2 > \cdot v_2 & v_3 := \frac{u_3}{||u_3||} \\ \vdots & \vdots & \vdots \\ u_m := b_m - \sum_{i=1}^{m-1} < b_m, v_i > \cdot v_i & v_m := \frac{u_m}{||u_m||} \end{array}$$

Beweis [2, S. 70]

Satz 6.4. (v_1, \ldots, v_k) ist eine Orthonormalbasis für $\lim(b_1, \ldots, b_m)$ für alle $k \in \{1, \ldots, m\}$.

Folgerung 6.1. Jeder endlich dimensionale Teilraum von V bestizt eine Orthonormalbasis.

6.2 Orthogonale Teilräume

Definition 6.3. Sei $(V, <\cdot, \cdot>)$ ein euklidischer oder unitärer Raum. Zu $M\subseteq V$ setze

$$M^{\perp} := \{ v \in V | \forall m \in M : \langle v, m \rangle = 0 \}.$$

Lemma 6.2. M^{\perp} ist linearer Teilraum von V.

Proposition 6.1. Seien $A, B \subseteq V$. Dann qilt:

- $A \subseteq B \Rightarrow A^{\perp} \supseteq B^{\perp}$
- $A \subseteq B^{\perp} \Rightarrow B \subseteq A^{\perp}$
- $A \subseteq (A^{\perp})^{\perp}$
- $A^{\perp} \subset ((A^{\perp})^{\perp})^{\perp}$

Bemerkung 6.2. Sei $V = \mathbb{R}^n$ und $a \in V$. Dann ist $a^{\perp} := \{a\}^{\perp} = \{v \in \mathbb{R}^n : \langle a, v \rangle = 0\}$ (Hyperebene). Für $a = (a_1, \ldots, a_n), x = (x_1, \ldots, x_n)$ gilt $\langle a, x \rangle = a_1x_1 + \cdots + a_nx_n, das$ heißt a^{\perp} ist die Lösungsmenge der linearen Gleichung $a_1x_1 + \cdots + a_nx_n = 0$. Weiter gilt für $a, b, c, \cdots \in \mathbb{R}^n$, dass $a, b, c, \ldots^{\perp} = a^{\perp} \cap b^{\perp} \cap c^{\perp} \ldots$ die Lösungsmenge des homogenen linearen Gleichungssystems.

Lemma 6.3. Seien $a_1, \ldots, a_m \in V$ und $U := lin(a_1, \ldots, a_m)$. Dann gilt

$$U^{\perp} = \{a_1, \dots, a_m\}^{\perp}.$$

Satz 6.5 (Orthogonalprojektion). Sei $U \leq V$ endlich-dimensionaler Teilraum mit Orthonormalbasis (u_1, \ldots, u_m) . Für die Abbildung

$$\pi: V \mapsto U; \ v \mapsto \pi(v) = \sum_{i=1}^{m} \langle v, u_i \rangle \cdot u_i$$

gelten folgende Eigenschaften:

- π ist linear.
- $\pi(v) \in U \ \forall \ v \in V$

- $\pi(u) = u \ \forall \ u \in U$
- $\pi \circ \pi = \pi$
- $\operatorname{Im}(\pi) = U \text{ und } \operatorname{Ker}(\pi) = U^{\perp}$
- $v \pi(v) \in U^{\perp}$ für alle $v \in V$
- $||v \pi(v)|| \le ||v u||$ für alle $v \in V$ und $u \in U$; Gleichheit gilt nur für $u = \pi(v)$.

Aus dem letzten Punkt folgt, dass π nicht von der speziellen Wahl der Orthonormalbasis abhängt.

6.3 Summen in Vektorräumen

Definition 6.4. Sei V ein Vektorraum über einem beliebigen Körper K. Für beliebige Teilmengen $A, B \subseteq V$ heißt

$$A + B := \{a + b | a \in A, b \in B\}$$

(Minkowski-)Summe von A und B.

Beispiel [2, S. 74]

Lemma 6.4. Falls $A, B \leq V$ Teilräume sind, so ist auch $A + B \leq V$ ein Teilraum.

Lemma 6.5. Seien $A, B \leq V$ endlich-dimensionale Teilräume. Dann gilt $\dim(A + B) = \dim(A) + \dim(B) - \dim(A \cap B)$.

Definition 6.5. Seien $A, B \leq V$ Teilräume mit $A \cap B = \{0\}$. Dann heißt $A \bigoplus B := A + B$ die (innere) direkte Summe von A und B.

Proposition 6.2. Sei $(V, <\cdot, \cdot>)$ ein euklidischer oder unitärer Raum und sei $U \le V$ ein endlich-dimensionaler Teilraum. Dann gilt

$$V = U \oplus U^{\perp} \text{ und } U \cap U^{\perp} = \{0\}.$$

Falls $\dim_K < \infty$ gilt, $dann \ ist \ \dim(U^{\perp}) = \dim(V) - \dim(U)$.

Beispiel [2, S. 75f]

Folgerung 6.2. Sein $U \leq V$ ein endlich-dimensionaler Teilraum. Dann gilt $(U^{\perp})^{\perp} = U$.

Bemerkung 6.3. Die Funktionen v_k und w_k die für $x \in [0,1]$ definiert sind durch

$$v_k(x) = \cos(2\pi kx)$$
 und $w_k = \sin(2\pi kx)$

für $k \in \mathbb{N}$, bilden ein Orthogonalsystem in $\varsigma[0,1]$. Durch Skalierung mit $\sqrt{2}$ erhalten wir ein Orthonormalsystem von Funktionen $v_0', v_1', \ldots, w_1', w_2', \ldots$

Definition 6.6. Der lineare Teilraum $T_n := lin(v_0, v_1, \dots, v_n, w_1, w_2, \dots, w_n)$ heißt Raum der trigonometrischen Polynome vom $Grad \leq n$.

Definition 6.7. Es sei $\Pi_n : \mathbb{C} \mapsto \tau_n$ die orthogonale Projektion auf den Raum der trigonometrischen Polynome vom Grad $\leq n$. $\Pi_n(f)$ die zu $f \in \mathbb{C}[0,1]$ bezüglich der L_2 Norm beste Approximation vom Grad $\leq n$. Es gilt

$$\Pi_n(f) = \langle f, v_0' \rangle \cdot v_0' + \sum_{k=1}^n (\langle f, v_k' \rangle \cdot v_k' + \langle f, w_k' \rangle \cdot w_k')$$

$$= \frac{\langle f, v_0 \rangle v_0}{||v||^2} + \dots$$
$$= \frac{a_0}{2} + \sum_{k=1}^{n} (a_k \cos(2\pi kx) + b_k \sin(2\pi kx))$$

mit $a_k = 2 \int_0^1 f(x) cos(2\pi kx) dx$ für $k \in \mathbb{N}$ und $b_k = 2 \int_0^1 f(x) sin(2\pi kx) dx$ für $k \in \mathbb{N} \setminus \{0\}$. Die unendliche Reihe $\sum_{k=1}^{\infty} (a_k \cos(2\pi kx) + b_k \sin(2\pi kx))$ heißt <u>Fourierreihe</u> von f. Falls f zweimal stetig differenzierbar und f(0)=1, dann konvergiert die Fourierreihe gleichmäßig gegen f.

6.4 Orthogonale und unitäre Abbildungen

Definition 6.8. Sei $(V, <\cdot, \cdot>)$ ein euklidischer (oder unitärer) Raum. Eine invertierbare lineare Abbildung $\varphi: V \mapsto V$ heißt orthogonal (bzw. <u>unitär</u>), falls gilt:

$$<\varphi(x), \varphi(y)>=< x, y> \ \forall \ x,y\in V$$

Bemerkung 6.4. Orhtogonale (bzw. unitäre) Abbildungen erhalten Längen und Winkel. Für dim $< \infty$ folgt die Invertierbarkeit aus der Isometrieeigenschaft.

Definition 6.9. Die Menge GL(V) aller invertierbaren linearen Abbildungen von V nach V bilden eine Gruppe bezüglich der Hintereinanderausführung.

Für $(V, \langle \cdot, \cdot \rangle)$ euklidisch heißt $O(V) := \{ \varphi \in GL(V) | \varphi \text{ orthogonal} \}$ die orthogonale Gruppe von V. Für $(V, \langle \cdot, \cdot \rangle)$ unitär heißt $U(V) := \{ \varphi \in GL(V) | \varphi \text{ unitär} \}$ die unitäre Gruppe von V.

Proposition 6.3. Sei (v_1, \ldots, v_n) eine Orthonormalbasis von V. Es gilt:

 $\varphi \in GL(V)$ orthogonal $\Leftrightarrow (\varphi(v_1), \dots, \varphi(v_n))$ Orthonormalbasis von V.

Definition 6.10. Eine Matrix $Q \in \mathbb{R}^{n \times n}$ heißt <u>orthogonal</u>, falls gilt $Q \cdot Q^T = E_n$. Außerdem gilt dann $\det(Q) = \pm 1$.

Notation 6.1. $O_n\mathbb{R} := \{Q \in \mathbb{R}^{n \times n} | QQ^T = E_n\} \subseteq GL_n(\mathbb{R})$

Definition 6.11. Für $M=(m_{ij})_{ij}\in\mathbb{C}^{n\times n}$ heißt die Matrix $M^*:=\overline{M}^T=(\overline{m}_{ji})_{ij}$ die adjungierte Matrix.

Definition 6.12. Eine Matrix $Q \in \mathbb{C}^{n \times n}$ heißt <u>unit</u>är, falls gilt $Q \cdot Q^* = E_n$. Außerdem gilt dann $\det(Q) = \pm 1$.

Notation 6.2. $U_n\mathbb{C}:=\{Q\in\mathbb{C}^{n\times n}|\ Q^{-1}=Q^*\}\subseteq GL(\mathbb{C})$

Definition 6.13. Die Gruppe $SL_nK := \{M \in GL_nK | \det(M) = 1\}$ mit $K \in \{\mathbb{R}, \mathbb{C}\}$ heißt die spezielle lineare Gruppe auf K^n .

Definition 6.14. Die Gruppe $SO_n\mathbb{R} := O_n\mathbb{R} \cap SL_n\mathbb{R}$ heißt die <u>spezielle orthogonale Gruppe</u> oder Gruppe der Drehungen auf \mathbb{R}^n .

Definition 6.15. Die Gruppe $SU_n\mathbb{C} := U_n\mathbb{C} \cap SL_n\mathbb{C}$ heißt die <u>spezielle unitäre Gruppe</u> auf \mathbb{C}^n .

Lemma 6.6.

$$O_n\mathbb{R} \subseteq GL_n(\mathbb{R})$$

$$U_n\mathbb{C}\subseteq GL_n(\mathbb{C})$$

Satz 6.6. Es sei $Q \in K^{n \times n}$. Äquivalent sind:

• Die lineare Abbildung $\phi: K^n \mapsto K^n$ ist orthogonal bzw. unitär bezüglich dem euklidischen (bzw. hermiteschen) Skalarprodukt auf K^n , das heißt

$$\forall v, w \in K^n : \langle Qv, Qw \rangle = \langle v, w \rangle.$$

• Die Spalten s_1, \ldots, s_n der Matrix Q bilden ein Orthonormalsystem, das heißt

$$\langle s_i, s_j \rangle = \delta_i j = \begin{cases} 1, & falls \ i = j \\ 0, & ansonsten \end{cases}$$

- Q ist eine orthogonale (bzw. unitäre) Matrix, das heißt $QQ^T = E_n$ ($QQ^* = E_n$).
- Q ist invertierbar, und es gilt $Q^{-1} = Q^T$.
- ullet Die Zeilen von Q bilden ein Orthonormalsystem.
- Q^T ist eine orthogonale Matrix, dh. $Q^TQ = E_n$.

7 Eigenwerte und Eigenvektoren

Beispiel [2, S. 83f]

Definition 7.1. Sei V ein endlich dimensionaler K-Vektorraum und $\phi: V \mapsto V$ ein K-linearer Endomorphismus. Ein Skalar $\lambda \in K$ heißt <u>Eigenwert</u> von ϕ , falls ein $v \in V \setminus \{0\}$ existiert, so dass

$$\phi(v) = \lambda \cdot v.$$

Jeder von Null verschiedene Vektor w, für den gilt $\phi(w) = \lambda \cdot w$ heißt <u>Eigenvektor</u> zum Eigenwert λ .

Der Unterraum

$$V_{\lambda} := V_{\lambda}(\phi) := ker(\phi - \lambda \cdot id_v) = \{v \in V | \phi(v) = \lambda \cdot v\}$$

heißt <u>Eigenraum</u> zum Eigenwert λ bzgl. ϕ . Die Dimension $d_{\lambda} := \dim(V_{\lambda}) \geq 1$ heißt geometrische Vielfachheit von λ .

Definition 7.2. Eine lineare Abbildung ϕ heißt diagonalisierbar, falls es eine Basis von V gibt, die aus Eigenvektoren besteht. Das heißt die zugehörige Matrix von ϕ bezüglich dieser Basis ist eine Diagonalmatrix.

Bemerkung 7.1. Es gilt:

- λ Eigenwert von $\phi \Leftrightarrow \exists v \neq 0 : (\phi \lambda \operatorname{id})(v) = 0 \Leftrightarrow \operatorname{Ker}(\phi \lambda \operatorname{id}_V) \neq \{0\}$
- v ist Eigenvektor von ϕ bezüglich des Eigenwerts $\lambda \Leftrightarrow v \neq 0$ und $(\phi \lambda \cdot id)(v) = 0 \Leftrightarrow v \in \text{Ker}(\phi \lambda id) \neq \{0\}$ (charakteristische Gleichung)

Satz 7.1. Sei $\phi \in End(V)$. Es gilt:

$$\lambda \ ist \ Eigenwert \ von \ \phi \ \Leftrightarrow \ \det(\phi - \lambda \operatorname{id}) = 0$$

Zur Berechnung der Eigenvektoren bezüglich der Eigenwerte löst man die Gleichung ($\phi - \lambda \operatorname{id}$) · v = 0.

Beispiel [2, S. 85]

Definition 7.3. Sei $M \in K^{n \times n}$. Dann heißt $\lambda \in K$ Eigenwert von M, falls λ Eigenwert von

$$\phi_M: K^n \mapsto K^n \ , \ x \mapsto M_x$$

ist. Analog für Eigenvektoren $M \cdot v = \lambda v$.

Satz 7.2. Seien $\lambda_1, \ldots, \lambda_r$ paarweise verschiedene Eigenwerte von ϕ und v_1, \ldots, v_r die zugehörigen Eigenvektoren. Dann ist (v_1, \ldots, v_r) linear unabhängig.

Folgerung 7.1. Falls ϕ sogar $n = \dim_K V$ paarweise verschiedene Eigenwerte hat, so ist ϕ auch diagonalisierbar.

Bemerkung 7.2. Seien $\lambda_1, \ldots, \lambda_n$ verschiedene Eigenwerte von ϕ mit den geometrischen Vielfachheiten d_1, \ldots, d_n . Sei $(b_{i1}, \ldots, b_{id_i})$ eine Basis des Eigenraums V_{λ} . Dann ist $B = (b_{11}, \ldots, b_{1d_1}, \ldots, b_{r1}, b_{rd_r})$ eine Basis von $V_{\lambda_1} \oplus \cdots \oplus V_{\lambda_r}$ Falls gilt $d_1 + \cdots + d_r = n$, dann ist $V_{\lambda_1} \oplus \cdots \oplus V_{\lambda_r} = V$ und ϕ ist diagonalisierbar:

$$[\phi]_B = \begin{pmatrix} \lambda_1 & & & \\ & \lambda_1 & & 0 \\ & & \ddots & \\ & 0 & & \lambda_r \\ & & & & \lambda_r \end{pmatrix}$$

7.1 Polynome

Definition 7.4. Sei K ein Körper. Eine Funktion $a: \mathbb{N} \mapsto K: n \mapsto a_n$ mit der Eigenschaft, dass $\exists N \in \mathbb{N} \ \forall n > N: a_n = 0$ heißt Polynom mit Koeffizienten in K.

Notation 7.1. Wir schreiben eine Funktion

$$a = (a_0, a_1, \dots, a_N, 0, \dots)$$

als

$$a(t) = a_0 + a_1 t + \dots + a_N t^N,$$

wobei das Symbol t eine <u>Unbestimmte</u> und kein Element aus K ist.

 $K[t] = \{a_0 + a_1t + \cdots + a_Nt^N \mid a_i \in K, N \in \mathbb{N}\}$ ist die Menge aller Polynome mit Koeffizienten in K in der Unbestimmten t.

Proposition 7.1. Mit der komponentenweisen Addition und der komponentenweisen Skalarmultiplikation ist K[t] ein K-Vektorraum mit Basis $(1, t, t^2, ...)$. Insbesondere ist K[t] ein unendlich-dimensionaler K-Vektorraum.

Definition 7.5. Zusätzlich kann man eine Polynommultiplikation definieren:

$$(a_0 + a_1t + \dots + a_Nt^N) \cdot (b_0 + b_1t + \dots + b_Mt^M)$$

$$= a_0b_0 + (a_0b_1 + a_1b_0)t + \dots + \left(\sum_{i+j=k} a_ib_j\right)t^k + \dots + a_Nb_Mt^{N+M}$$

Satz 7.3. $(K[t], +, \cdot)$ ist eine kommutative K-Algebra, das heißt es gilt:

- $(K[t], +, \cdot)$ mit der Skalarmultiplikation \cdot ist ein K-Vektorraum.
- $(K[t], +, \cdot)$ mit der Polynommultiplikation \cdot ist ein kommutativer Ring.
- Es qibt ein multiplikatives Neutralelement 1.
- Es gilt $(\lambda a)b = \lambda(ab) \ \forall \ \lambda \in K; a, b \in K[t].$

Definition 7.6. Sei $a : \mathbb{N} \mapsto K : n \mapsto a_n$ ein Polynom. Falls a = 0, setze $deg(a) = -\infty$. Für $a \neq 0$ sei $deg(a) := \min\{N \in \mathbb{N} \mid \forall n > N : a_n = 0\}$. Die Zahl $deg(a) \in \mathbb{N} \cup \{-\infty\}$ heißt \underline{Grad} von a.

Lemma 7.1. Seien $a, b \in K[t]$. Dann gilt:

- $deg(a+b) \leq \max(deg(a), deg(b))$
- $deg(a \cdot b) = deg(a) + deg(b)$

Folgerung 7.2. Sei $a, b \in K[t] \setminus \{0\}$. Dann ist $a \cdot b \neq 0$, das heißt der Ring K[t] ist nullteilerfrei.

Beispiel [2, S. 88f]

Definition 7.7. Zu einem Polynom $a = a_0 + a_1t + \cdots + a_nt^n \in K[t]$ kann man die Auswertungsabbildung oder auch Polynomfunktion

$$\tilde{a}: K \mapsto K$$
, $\lambda \mapsto a_0 + a_1\lambda + \dots + a_n\lambda^n$

betrachten.

Definition 7.8. Die Zahl $\lambda \in K$ heißt Nullstelle von $a \in K[t]$, falls gilt

$$\tilde{a} = a_0 + a_1 \lambda + \dots + a_N \lambda^N = 0.$$

Proposition 7.2. Ist $a \in K[t]$ ein Polynom vom Grad $d \ge 1$ mit einer Nullstelle $\lambda \in K$, so existiert ein eindeutig bestimmtes Polynom $b \in K[t]$ mit deg(b) = d-1 und $a = (t-\lambda)b$.

Bemerkung 7.3. Die Umkehrung von Proposition 7.2 gilt ebenfalls: Falls $a = (t - \lambda)b$, dann ist λ Nullstelle von a.

Folgerung 7.3. Ein Polynom in K [t] vom Grad d hat höchstens d Nullstellen in K.

Definition 7.9. Seien $a \in K[t]$ und $\lambda \in K$, so dass $a = (t - \lambda)^s b$ für $s \ge 1$ und $b \in K$ mit $\tilde{b}(\lambda) \ne 0$ Dann heißt s die <u>Vielfachheit</u> der Nullstelle λ von a, und λ heißt <u>s-fache Nullstelle</u> von a.

Bemerkung 7.4. Seien $\lambda_1, \ldots, \lambda_r$ die verschiedenen Nullstellen des Polynoms $a \in K[t]$ mit Vielfachheiten s_1, \ldots, s_r . Dann existiert eindeutig ein Polynom $b \in K[t]$ ohne Nullstellen, so dass

$$a = (t - \lambda_1)^{s_1} \cdot \dots \cdot (t - \lambda_r)^{s_r} \cdot b.$$

Bemerkung 7.5 (Fundamentalsatz der Algebra). Jedes Polynom $a \in \mathbb{C}[t]$ mit $deg(a) \geq 1$ besitzt eine Nullstelle. Der Körper \mathbb{C} ist algebraisch abgeschlossen.

7.2 Charakteristische Polynome

Beispiel [2, S. 90]

Definition 7.10. Sei $A \in K^{n \times n}$ eine quadratische Matrix. Die Determinante

$$\chi_A(t) = \det(A - t \cdot E_n) \in K[t]$$

heißt charakteristisches Polynom von A.

Satz 7.4. $\chi_A(t) \in K[t]$ ist ein Polynom vom Grad n. Es gilt

$$\chi_A(t) = (-1)^n t^n + (-1)^{n-1} (tA) t^{n-1} + \dots + \det(A).$$

Bemerkung 7.6. Die Eigenwerte von A sind genau die Nullstellen des charakteristischen Polynoms χ_A .

Definition 7.11. Sei λ Eigenwert von A. Dann heißt die Vielfachheit der Nullstelle λ in $\chi_A(t) = \det(A - t \cdot E_n)$ die algebraische Vielfachheit des Eigenwerts λ .

Beispiel [2, S. 92]

Proposition 7.3. Für jeden Eigenwert λ von A ist die geometrische Vielfachheit d_{λ} stets kleiner oder gleich der algebraischen Vielfachheit.

Satz 7.5. Die Matrix A ist diagonalisierbar über K genau dann wenn $\chi_A \in K[t]$ in Linearfaktoren zerfällt, daher

$$\chi_A(t) = (t - \lambda_1)^{l_1} \cdot \dots \cdot (t - \lambda_r)^{l_r},$$

und falls für jeden Eigenwert λ_i die allgemeine Vielfachheit mit der geometrischen Vielfachheit übereinstimmt.

Bemerkung 7.7. Ähnliche Matrizen haben das gleiche charakteristische Polynom. Daher haben sie auch die gleichen Eigenwerte.

Umgekehrt, zerfällt $\chi_A(t) = (\bar{\lambda}_1 - t)^{l_1} \cdot \dots \cdot (\lambda_r - t)^{l_r}$ in Linearfaktoren und $l_i = d_i \ \forall \ i$. Dann folgt $n = \deg \chi_A = l_1 + \dots + l_r = d_1 + \dots + d_r$ und damit $K^n = V_{\lambda_1} \oplus V_{\lambda_r}$ und A ist diagonalisierbar.

Folgerung 7.4. Eine Matrix $A \in \mathbb{C}^{n \times n}$ ist diagonalisierbar, wenn für jeden Eigenwert $\lambda_i \in \mathbb{C}$ die geometrische und die algebraische Vielfachheit übereinstimmen.

Folgerung 7.5. Jede komplexe Matrix besitzt einen Eigenwert.

Definition 7.12. Sei neben der in Definition 7.7 angegebenen Abbildung die Auswertungsabbildung

$$\tilde{a}: K^{n \times n} \mapsto K^{n \times n}: M \mapsto a_0 E_n + a_1 M + a_2 M^2 + \dots + a_n M^n$$

definiert.

Bemerkung 7.8.

- Die Abbildung $\Phi_M : k[z] \mapsto K^{nxn} : a \mapsto a \pmod{M}$ ist ein K-Algebra-Homomorphismus.
- Man kann ebenso eine Auswertungsabbildung in End_KV betrachten für beliebige K-Vektorräume V.

Bemerkung 7.9.

- Der Ring K[t] ist nullteilerfrei, aber der Ring $K^{n \times n}$, $n \ge 2$ ist dies nicht.
- Es gilt $\forall \lambda \in K$:

$$\tilde{a}(\lambda E_n) = a_0 E_n + a_1 \lambda E_n^1 + \dots + a_n \lambda^N E_n^N = \tilde{a}(\lambda) E_n$$

Das heißt falls λ Nullstelle von a ist, so gilt $\tilde{a}(\lambda E_n) = 0$

Beweis [2, S. 96f]

Satz 7.6 (Cayley-Hamilton). Sei $M \in K^{n \times n}$. Dann $gilt \tilde{\chi}_M(M) = 0$.

Beweis [2, S. 97f]

Satz 7.7. Für jede Matrix existiert genau ein Polynom μ_A minimalen Grades mit Leitkoeffizient 1, für das gilt

 $\tilde{\tilde{\mu}}_A(A) = 0.$

Das Polynom $\mu_A \in k[t]$ heißt das Minimalpolynom von A.

Bemerkung 7.10. Die Existenz annullierender Polynome zu linearen Abbildungen ist nur im endlich-dimensionalen Vektorraum gesichert.

Satz 7.8. Ähnliche Matrizen haben das selbe Minimalpolynom.

Satz 7.9. Sei $A \in K^{n \times n}$. Dann haben χ_A und μ_A die selben Nullstellen.

8 Diagonalisierung normaler Matrizen

Im Folgenden sei stets $K \in \{\mathbb{R}, \mathbb{C}\}$ und $(K^n, <\cdot, \cdot>)$ der Standard-euklidische bzw. - unitäre Raum.

Definition 8.1. Sei $A = (a_{ij}) \in \mathbb{C}^{n \times n}$. Die Adjungierte von A ist definiert als

$$A^* = \overline{A}^{\top} = \overline{A}^{\top} = (\overline{a}_{ij})$$

 $mit \ \overline{A} = (\overline{a}_{ij}).$

Lemma 8.1 (Rechenregeln).

$$(A+B)^* = A^* + B^*$$
$$(\lambda A)^* = \overline{\lambda} A^* \text{ für } \lambda \in \mathbb{C}$$
$$(AB)^* = B^* A^*, A^{**} = A$$

Definition 8.2. Sei $A \in K^{n \times n}$

- A symmetrisch \Leftrightarrow $A = A^{\top}$
- A schifsymmetrisch \Leftrightarrow $A = -A^{\top}$
- $A \underline{hermitesch} \Leftrightarrow A = A^* \underline{selbstadjungiert}$
- A schiefhermitesch \Leftrightarrow $A = -A^*$

Lemma 8.2. Es gilt für $A \in \mathbb{C}^{n \times n}$:

- $A = \frac{1}{2}(A + \overline{A}) + \frac{1}{2}(A \overline{A})$
- $A = \frac{1}{2}(A + A^{\top}) + \frac{1}{2}(A^{\top})$
- $A = \frac{1}{2}(A + A^*) + \frac{1}{2}(A A^*)$

Lemma 8.3. Für $A \in \mathbb{C}^{n \times n}$ und $v, w \in \mathbb{C}^n$ gilt

$$< Av, w > = < v, A^*w > .$$

Folgerung 8.1. $\langle v, Aw \rangle = \langle v, A^{**} \rangle = \langle v, (A^*)^*w \rangle = \langle A^*v, w \rangle$

Definition 8.3. Eine Matrix $A \in \mathbb{C}^{n \times n}$ heißt normal, falls gilt

$$AA^* = A^*A$$
.

Bemerkung 8.1. Normal sind die folgenden Matrizen:

- unitäre Matrizen
- $\bullet \ \ reelle \ orthogonale \ Matrizen$
- Diagonalmatrizen
- hermitesche und schiefhermitesche Matrizen
- reelle symmetrische und schiefsymmetrische Matrizen

Lemma 8.4. Sei $A \in \mathbb{C}^{n \times n}$ normal. Dann gilt:

- $A \lambda E_n$ ist normal $\forall \ \lambda \in \mathbb{C}$
- Q^*AQ ist normal $\forall Q \in \mathbb{U}_n\mathbb{C}$

Lemma 8.5. Sei $A \in \mathbb{C}^{n \times n}$ normal. Sei $\lambda \in \mathbb{C}$ Eigenwert von A und v zugehöriger Eigenvektor. Dann gilt: $\overline{\lambda} \in \mathbb{C}$ ist Eigenwert von A^* mit zugehörigem Eigenvektor v.

Proposition 8.1. Sei $A \in \mathbb{C}^{n \times n}$ hermitesch. Dann sind alle Eigenwerte von A reell. Insbesondere sind die komplexen Eigenwerte reeller symmetrischer Matrizen stets reell.

Bemerkung 8.2. Komplexe symmetrische Matrizen können nicht-reelle Eigenwerte haben.

Satz 8.1. Sei $A \in \mathbb{C}^{n \times n}$ normal. Dann sind die Eigenvektoren zu verschiedenen Eigenwerten orthogonal.

Satz 8.2. Sei $A \in \mathbb{C}^{n \times n}$ eine Matrix. Äquivalent sind:

- A ist normal.
- \mathbb{C}^n besitzt eine Orthonormalbasis aus Eigenvektoren zu A.
- Es existiert $Q \in \mathbb{U}_n\mathbb{C}$, sodass $Q^{-1}AQ$ eine Diagonalmatrix ist.

Satz 8.3. Für $A \in \mathbb{C}^{n \times n}$ sind äquivalent:

- A ist hermitesch.
- A ist normal und alle Eigenwerte sind reell.
- $\exists Q \in \mathbb{U}_n\mathbb{C}$, sodass $Q^{-1}AQ$ eine reelle Diagonalmatrix ist.

Satz 8.4. Für $A \in \mathbb{R}^{n \times n}$ sind äquivalent:

- A ist symmetrisch.
- \mathbb{R}^n besitzt Orthonormalbasis aus Eigenvektoren zu A.
- $\exists Q \in \mathbb{O}_n \mathbb{R}$, sodass $Q^{-1}AQ$ eine (reelle) Diagonalmatrix ist.

Satz 8.5. Für $A \in \mathbb{C}^{n \times n}$ sind äquivalent:

- \bullet A unitär
- A ist normal und alle Eigenwerte haben den Betrag 1.
- $\exists Q \in \mathbb{U}_n\mathbb{C}$, sodass $Q^{-1}AQ$ eine Diagonalmatrix mit dem Betrag der Einträge von 1 ist.

9 Jordansche Normalform

Definition 9.1. Sei K ein beliebiger Körper. Ein <u>Jordanblock</u> oder elementare Jordanmatrix ist eine Matrix

$$J_{m,\lambda} = \begin{pmatrix} \lambda & 1 & 0 & 0 \\ 0 & \lambda & 1 & 0 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & \lambda \end{pmatrix} \in K^{m \times m}$$

Lemma 9.1. Ein Jordanblock $J_{m,\lambda}$ mit m > 1 ist nicht diagonalisierbar. Der Eigenraum zum Eigenwert λ ist eindimensional.

Lemma 9.2. $\mu_{J_{m,\lambda}} = \chi_{J_{m,\lambda}} = (\lambda - t)^m$

Definition 9.2. Eine Matrix $A \in K^{n \times n}$ besitzt <u>Jordansche Normalform</u>, falls sie eine Blockdiagonalmatrix aus Jordanblöcken ist:

$$A = \begin{pmatrix} J_{m_1,\lambda_1} & 0 \\ & \ddots & \\ 0 & J_{m_k,\lambda_k} \end{pmatrix}$$

Satz 9.1. Sei $V \in \mathbb{C}^n$ und $\phi \in End_{\mathbb{C}}V$ ein Endomorphismus. Dann existiert eine Basis B von V, sodass $[\phi]_B$ Jordansche Normalform besitzt.

Folgerung 9.1. Sei $A \in \mathbb{C}^{n \times n}$. Dann ist A ähnlich zu einer Matrix in Jordanscher Normalform, daher existiert $B \in GL_n\mathbb{C} : B^{-1}AB$ in Jordanscher Normalform ist.

Folgerung 9.2. Zwei komplexe Matrizen sind ähnlich genau dann wenn sie bis auf Umordnungen der Jordanblöcke dieselbe Jordansche Normalform haben.

Sei $V = \mathbb{C}^n$, $\phi \in End_{\mathbb{C}}V$ und λ ein Eigenvektor von ϕ . Sei $B = (v_1, \dots, v_m, v_{m+1}, \dots, v_n)$ eine Basis von V bezüglich derer gilt:

$$[\phi]_B = \begin{pmatrix} J_{m,\lambda} & & 0 \\ & \ddots & \\ & & * \\ 0 & & \ddots \end{pmatrix}$$

Dann gilt:

$$(*) \begin{cases} \phi(v_1) &= \lambda v_1 \\ \phi(v_2) &= v_1 + \lambda v_2 \\ \vdots \\ \phi(v_m) &= v_{m-1} + \lambda v_m \end{cases} \Leftrightarrow \begin{cases} (\phi - \lambda \operatorname{id})v_1 &= 0 \\ (\phi - \lambda \operatorname{id})v_2 &= v_1 \\ \vdots \\ (\phi - \lambda \operatorname{id})v_m &= v_{m-1} \end{cases}$$

Definition 9.3. Eine Familie (v_1, \ldots, v_m) in V heißt $\underline{Jordankette}$ zum Eigenvektor λ von ϕ , falls $v_1 \neq 0$ und (*) erfüllt ist.

Lemma 9.3. Eine Jordankette zum Eigenwert λ von ϕ ist linear unabhängig.

Definition 9.4. Ein Vektor $v \in V \setminus \{0\}$ heißt <u>verallgemeinerter Eigenvektor</u> (oder <u>Hauptvektor</u>) von ϕ , falls ein $m \in \mathbb{N} \setminus \{0\}$ existiert mit

$$(**) (\phi - \lambda \operatorname{id})^m \cdot v = 0$$

Das kleinste $m \in \mathbb{N}$, für das (**) gilt, heißt Stufe von v.

Definition 9.5. Sei v ein Hauptvektor der Stufe m. Wir setzten

$$v_{1} := (\phi - \lambda \operatorname{id})^{m-1}v$$

$$v_{2} := (\phi - \lambda \operatorname{id})^{m-2}v$$

$$\vdots$$

$$v_{m-1} := (\phi - \lambda \operatorname{id})v$$

$$v_{m} := v$$

Dann gilt offenbar (*), und (v_1, \ldots, v_m) ist eine Jordankette, also linear unabhängig.

$$\Rightarrow m \leq n$$

Definition 9.6.

$$V^{\lambda}(\phi) := \bigcup_{kin\mathbb{N}} ker(\phi - \lambda \operatorname{id})^k = lin(v_1, \dots, v_m)$$

 $hei\beta t$ verallgemeinerter Eigenraum von λ .

Satz 9.2. Sei $V = \mathbb{C}^n$, $\phi \in End_{\mathbb{C}}V$ mit den paarweise verschiedenen Eigenwerten $\lambda_1, \ldots, \lambda_k$. Dann gilt

$$V = V^{\lambda_1}(\phi) \oplus \cdots \oplus V^{\lambda_k}(\phi).$$

Bemerkung 9.1. $dim V^{\lambda_i}(\phi) = algebraische Vielfachheit von \lambda$

Beweis [2, S. 107]

Lemma 9.4. Sei $\zeta = (v_1^1, \dots, v_{l_1}^1, v_1^2, \dots, v_{l_2}^2, \dots, v_1^s, \dots, v_{l_s}^s)$ eine Familie von s Jordan-ketten zum Eigenwert λ von ϕ , daher

$$(\phi - \lambda \operatorname{id})v_{j+1}^i = v_j^i \text{ für } 1 \le j \le l_i$$

und

$$(\phi - \lambda \operatorname{id})v_1^i = 0$$

Sind die Eigenvektoren v_1^1, \ldots, v_1^s linear unabhängig, so sind alle Vektoren von ζ linear unabhängig.

Beweis [2, S. 107f]

Lemma 9.5. Sei $\zeta = (v_1^1, \dots, v_{l_1}^1, v_1^2, \dots, v_{l_2}^2, \dots, v_{l_s}^s)$, aber linear abhängig. Dann existiert eine Familie ζ' von Jordanketten mit $lin(\zeta) = lin(\zeta')$, die einen Vektor weniger als ζ enthält.

Satz 9.3. Für jeden Eigenwert λ von ϕ besitzt der verallgemeinerte Eigenraum $V^{\lambda}(\phi)$ eine Jordanbasis.

Beispiel [2, S. 109f]

9.1 Verfahren zur Bestimmung einer Jordanbasis

Sei $V = \mathbb{C}^n$ und $\phi \in End_{\mathbb{C}}V$. Nachfolgend ist ein Verfahren zur Bestimmung einer Jordanbasis von V bezüglich ϕ angegeben, sodass also $[\phi]_J$ Jordansche Normalform besitzt.

- Bestimme Eigenwerte $\lambda_1, \ldots, \lambda_k$ von ϕ mit ihren algebraischen Vielfachheiten l_1, \ldots, l_k .
- Für jeden Eigenwert λ_i : Bestimme die Basis des verallgemeinerten Eigenraums $V^{\lambda_1}(\phi)$. Dazu löst man schrittweise die linearen Gleichungssysteme

$$(\phi - \lambda_i \operatorname{id})^j v = 0$$
 für $j = 1, 2, \dots$

bis man l_i linear unabhängige Lösungen gefunden hat.

- Bilde Jordanketten und verkürze sie schrittweise durch Anwendung von Lemma 9.5, bis man eine Basis erhält.
- Die Matrix des Basiswechsels besitzt als Spalten verallgemeinerte Eigenvektoren (kettenweise aufsteigend).

10 Quadratische Formen

Beispiel [2, S. 111]

Definition 10.1. Eine Abbildung $Q: V \mapsto \mathbb{R}$ heißt quadratische Form, falls gilt:

- $Q(\lambda v) = \lambda^2 Q(v) \ \forall \ \lambda \in \mathbb{R}, v \in V$
- $\beta_Q: V \times V \mapsto \mathbb{R}: (u,v) \mapsto \frac{1}{2} [Q(u+v) Q(u) Q(v)]$ ist eine symmetrische Bilinearform.

Definition 10.2. Q heißt die zu β <u>assoziierte</u> quadratische Form.

Bemerkung 10.1. Die aus Definition 10.1 resultierende Entsprechung zwischen quadratischer Form und symmetrischer Bilinearform gilt allgemein über beliebigen Körpern, in denen $1+1\neq 0$ gilt.

Sei nun $V = \mathbb{R}^n$ und $B = (v_1, \dots, v_n)$ eine Basis. Sei $\beta : V \times V \mapsto \mathbb{R}$ eine symmetrische Bilinearform. Definiere $\beta_{ij} \in \mathbb{R}$ für $1 \le i, j \le n$ durch $\beta_{ij} := \beta(v_i, v_j)$.

Beispiel [2, S. 112]

Definition 10.3. $[\beta]_B = (\beta_{ij})_{1 \leq i,j \leq n}$ heißt Matrix von β bezüglich B.

Lemma 10.1. Sei $B = (b_{ij}) \in \mathbb{R}_{n \times n}$ eine beliebige symmetrische Matrix. Dann definiert

$$(u,v) \mapsto u^{\top} B v$$

eine symmetrische Bilinearform auf V.

Satz 10.1. Sei $B' = (v'_1, \ldots, v'_k)$ eine weitere Basis und β eine symmetrische Lilinearform mit Matrizen $A = [\beta]_B$ und $A' = [\beta]_{B'}$. Es sei ferner $S = (s_{ij})$ die Matrix des Basiswech-

sels von B' nach B, daher
$$S = [\mathrm{id}]_B^{B'}$$
 und $\begin{pmatrix} s_{i1} \\ \vdots \\ s_{in} \end{pmatrix} = [v_i']_B$.

Dann gilt

$$A' = S^{\top} A S.$$

Satz 10.2. Sei $V = \mathbb{R}^n$ der euklidische Vektorraum mit dem Standardskalarprodukt $< \cdot, \cdot >$. Sei $\beta : V \times V \mapsto \mathbb{R}$ eine symmetrische Bilinearform mit assoziierter quadratischer Form $Q(v) = \beta(v, v)$. Dann existiert eine Orthonormalbasis $B = (v_1, \dots, v_n)$ von \mathbb{R}^n , so dass $[\beta]_B$ eine Diagonalmatrix ist, daher

$$[\beta]_B = \begin{pmatrix} \lambda_1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \lambda_n \end{pmatrix}.$$

Die eindimensionalen Teilräume, die von den Basisvektoren v_i aufgespannt werden, heißen Hauptachsen von β .

Definition 10.4. Für eine quadratische Form $Q: V \mapsto \mathbb{R}$ heißt $\{v \in V \mid Q(v) = 1\}$ Quadrik zu Q.

11 Gauß-Jordan Algorithmus

Wir betrachten das lineare Gleichungssystem

$$a_{11}x_1 + \dots + a_{1n}x_n = b_1$$

$$\vdots \quad \vdots \quad \vdots$$

$$a_{m1}x_1 + \dots + a_{mn}x_n = b_m$$
(1)

über K. Gesucht sind Lösungen (x_1, \ldots, x_n) .

Definition 11.1. Das Gleichungssystem 1 heißt <u>homogen</u>, falls $b_i = \cdots = b_m = 0$. Andernfalls heißt es inhomogen.

Proposition 11.1. Die Lösungsmenge der linearen Gleichungssystems ändert sich nicht unter den folgenden elementaren Zeilenoperationen:

- 1. Addiere zu einer Gleichung das λ -fache einer anderen Gleichung
- 2. Tausche zwei Gleichungen
- 3. Multipliziere eine Gleichung mit $\lambda \in K \setminus \{0\}$

11.1 Algorithmus

Beispiel [2, S. 23]

- 1. Falls $a_{11} \neq 0$, subtrahiere das $\frac{a_{n1}}{a_{11}}$ -fache der 1. Gleichung von der n-ten Gleichung.
 - Falls $a_{11} = 0$, so finde $a_{i1} \neq 0$ und vertausche die 1. Gleichung mit der i-ten.
 - Falls kein solches a_{i1} existiert, so tue nichts.
- 2. Die unteren m-1 Gleichungen des modifizierten Gleichungssystems können wie im Schritt 1 behandelt werden.

Nach m-1 Schritten hat das entstandene lineare Gleichungssystem die folgende Zeilenstufenform:

$$c_{1j_1}xj_1 + \dots + c_{1n}x_n = d_1$$

$$c_{2j_2}xj_2 + \dots + c_{2n}x_n = d_2$$

$$\vdots \quad \vdots \quad \vdots$$

$$c_{rj_r}xj_r + c_{rn}x_n = d_r$$

$$\vdots \quad \vdots \quad \vdots$$

$$0 = d_m$$
(2)

 x_{j_k} nennt man <u>Pivotvariablen</u>. Dabei gilt $\forall k \in \{1, \dots, r\} : c_{kj_k} \neq 0$ und $j_1 < j_2 \dots < j_r \leq n$, sowie $0 \leq r \leq m$.

Definition 11.2. Die Zahl r heißt Rang des Gleichungssystems 2.

Die Lösungsmenge des Gleichungssystems bestimmt man wie folgt:

- Falls $d_i \neq 0, i \geq r+1$ hat das Gleichungssystem keine Lösung.
- Falls $d_i = 0, i \ge r + 1$:
 - 1. Wähle beliebige Werte aus K für jede der n-r Nicht-Pivot-Variablen.
 - 2. Löse danach die verbleibenden Gleichungen auf.
 - 3. Die Lösungsmenge enthält genau ein Element, genau dann wenn r=n ist und $d_i=0, i\geq r+1.$

11.2 Der homogene Fall

Beispiel [2, S. 24]

Im homogenen Fall sind sämtliche $d_k = 0$, und falls r < n, so können wir n-r verschiedene Lösungen b_1, \ldots, b_{n-r} wie folgt konstruieren:

 b_k entsteht wie in Abschnitt 11.1 erläutert, wobei man für die k-te Nicht-Pivotvariable 1 und für die übrigen 0 wählt und anschließend die Werte der Pivotvariablen ausrechnet.

Proposition 11.2. (b_1, \ldots, b_{k-r}) ist eine Basis des Lösungsraums.

11.3 Zeilenoperationen in Matrizendarstellung

Sei $A \in K^{n \times n}$ beliebig. Der Gauß-Jordan-Algorithmus formt A durch endlich viele elementare Zeilenoperationen zu einer Matrix B in Zeilenstufenform um. Eine Matrix in Zeilenstufenform ist eine obere Dreiecksmatrix. Die elementaren Zeilenoperationen entsprechen der Multiplikation mit Matrizen von links. Die Matrizen der Zeilenoperationen haben dann folgende Darstellung:

1. Addition einer Zeile:

$$L' = E_n + \lambda E_{ij}, i \neq j \text{ mit } \det(L') = 1$$

2. Vertauschung von Zeilen:

$$mit det(L') = -1$$

3. Multiplikation mit einem Skalar:

$$L' = diag(1, \dots, 1, \lambda, 1, \dots, 1), \lambda \neq 0)$$
 mit $det(L') = \lambda$

Beispiel [2, S. 59]

Um eine Zeilenstufenform zu erreichen, genügen die Operationen 1 und 2. Daraus folgt $det(A) = det(B) \cdot (-1)^t$, wobei t die Anzahl der Zeilenvertauschungen ist.

Literatur

- [1] Peter Furlan. Das gelbe Rechenbuch.
- [2] Dr. habil. Raymond Hemmecke. Lineare Algebra für Physiker. 2008.
- $[3]\,$ Prof. Dr. Otto. Linear Algebra I. 2008.
- [4] Prof. Dr. Otto. Linear Algebra II. 2009.