Partielle Differentialgleichungen

8. Übung Lösungsvorschlag

Hausübung

 $\mathbf{H}\,\mathbf{1} \quad \mathrm{Let} \ u(x,y) = \ln \sqrt{x^2 + y^2} \ \mathrm{for} \ U = \mathbb{R}^2 \setminus \{(0,0)\}.$

1. Prove that $\Delta u(x,y) = 0$ for $(x,y) \in U$.

In polar coordinates:

$$\Delta u = (\ln r)_{rr} + \frac{1}{r} (\ln r)_r = -\frac{1}{r^2} + \frac{1}{r^2} = 0.$$

2. For r > 0 calculate the integral

$$\int_{\partial B(0,r)} \frac{\partial u}{\partial \nu}(y) dS_y.$$

Again, in polar coordinates $\frac{\partial u}{\partial \nu} = u_r$ and so

$$\int_{\partial B(0,r)} u_r dS = \int_{\partial B(0,r)} \ln r dS = |\partial B(0,r)| \ln r.$$

3. Explain why the above result doesn't contradict Gauss's theorem.

The function u is defined in the set $U = B(0, r) \setminus \{(0, 0)\}$ and so $U = \partial B(0, r) \cup \{(0, 0)\}$ and in fact, we did not integrate at (0, 0), where the function is infinite (Δu looks at (0, 0) similarly to Dirac's delta).

H 2 Prove that $\Delta u = v_{rr} + \frac{1}{r}v_r + \frac{1}{r^2}v_{\phi\phi}$ in radial coordinates. *Hint:* Let

$$x = r \cos \phi, \quad y = r \sin \phi.$$

Take $u(x,y) = v(r,\phi) = v\left(\sqrt{x^2 + y^2}, \arctan \frac{y}{x}\right)$. Then compute $\partial_x u, \partial_{xx} u, \partial_y u, \partial_{yy} u$ using the chain rule.

Similar exercises have been done before.