
Partielle Differentialgleichungen

5. Übung
Lösungsvorschlag

Hausübung

H 1 Let u be the solution to the initial-boundary problem

utt =c2∆u + f for (t, x) ∈ R+ × Ω
u(t, x) =0 for (t, x) ∈ R+ × ∂Ω

u(0, x) =u0(x) for x ∈ Ω

ut(0, x) =u1(x) for x ∈ Ω,

where Ω ⊂ Rn is open and bounded. Let

E(t) =
∫

Ω

(
u2

t + c2|∇u|2
)
dx

be the energy at point t ∈ R+.

1. Prove that if f = 0 then E(t) is a constant function.
Hint: Compute the derivative and use integration by parts.

Computing the derivative we get:

d

dt
E(t) =

∫
Ω

(
2ututt + 2c2∇u · ∇ut

)
dx

=2
∫

Ω

(
ututt − c2∆uut

)
dx + 2

∫
∂Ω

c2 ∂u

∂ν
utdx = 0.

Therefore E(t) = E(0) = const.

2. Prove that the solution with arbitrary f is unique.
Hint: Assume there are two solutions u and v. What initial-boundary problem does the
difference u− v satisfy?

Take w = u− v, then w satisfies the wave equation with f = 0 and zero initial values.
This means that the energy is constant and E(0) = 0 and therefore wt,∇w = 0 and
so w(t, x) = const and again taking into account that the initial conditions are zero,
w(t, x) = 0.

H 2 Let u ∈ C2(R3) be a solution of the partial differential equation

−∆u(x) = g(x), x ∈ R3.

1. Prove that
1
r2

∫
Br(x)

∆u(y)dy =
d

dr

(
1
r2

∫
∂Br(x)

u(y)dSy

)
.

We have ∫
Br(x)

∆u(y)dy =
∫

∂Br(x)
∇u(y) · νdSy =

∫
∂B1(0)

∇u(x + rz) · zdSz

and also

d

dr

(
1
r2

∫
∂Br(x)

u(y)dSy

)
=

d

dr

(
1
r2

∫
∂B1(0)

r2u(x + rz)dSz

)

=
∫

∂B1(0)
∇u(x + rz) · zdSz

and from this follows the desired equality.
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2. Use this equation to show that

u(x) =
1

ω3r2

∫
∂Br(x)

u(y)dSy +
∫ r

0

(
1

ω3r2

∫
Br(x)

g(y)dy

)
dr.

We have

− 1
ω3r2

∫
Br(x)

g(y)dy =
1

ω3r2

∫
Br(x)

∆u(y)dy =
d

dr

(
1

ω3r2

∫
∂Br(x)

u(y)dSy

)

and so, after integration with respect to r:

1
ω3r2

∫
∂Br(x)

u(y)dSy +
∫ r

0

(
1

ω3r2

∫
Br(x)

g(y)dy

)
dr = lim

ε→0+

∫
∂Bε(x)

u(y)dSy + C = u(x) + C

from the mean value theorem. Taking r → 0+ in the above equality we get

u(x) + 0 = u(x) + C

and so C = 0, which proves the desired result (notice that G(r) = 1
ω3r2

∫
Br(x) g(y)dy →

g(x) when r → 0 and so
∫ r
0 G(r)dr → 0 with r → 0, when g is a continuous function).


