Partielle Differentialgleichungen

5. Übung
Lösungsvorschlag

Hausübung

H 1 Let u be the solution to the initial-boundary problem

$$
\begin{aligned}
u_{t t} & =c^{2} \Delta u+f \quad \text { for }(t, x) \in \mathbb{R}_{+} \times \Omega \\
u(t, x) & =0 \quad \text { for }(t, x) \in \mathbb{R}_{+} \times \partial \Omega \\
u(0, x) & =u^{0}(x) \quad \text { for } x \in \Omega \\
u_{t}(0, x) & =u^{1}(x) \quad \text { for } x \in \Omega
\end{aligned}
$$

where $\Omega \subset \mathbb{R}^{n}$ is open and bounded. Let

$$
E(t)=\int_{\Omega}\left(u_{t}^{2}+c^{2}|\nabla u|^{2}\right) d x
$$

be the energy at point $t \in \mathbb{R}_{+}$.

1. Prove that if $f=0$ then $E(t)$ is a constant function.

Hint: Compute the derivative and use integration by parts.
Computing the derivative we get:

$$
\begin{aligned}
\frac{d}{d t} E(t) & =\int_{\Omega}\left(2 u_{t} u_{t t}+2 c^{2} \nabla u \cdot \nabla u_{t}\right) d x \\
& =2 \int_{\Omega}\left(u_{t} u_{t t}-c^{2} \Delta u u_{t}\right) d x+2 \int_{\partial \Omega} c^{2} \frac{\partial u}{\partial \nu} u_{t} d x=0
\end{aligned}
$$

Therefore $E(t)=E(0)=$ const.
2. Prove that the solution with arbitrary f is unique.

Hint: Assume there are two solutions u and v. What initial-boundary problem does the difference $u-v$ satisfy?

Take $w=u-v$, then w satisfies the wave equation with $f=0$ and zero initial values. This means that the energy is constant and $E(0)=0$ and therefore $w_{t}, \nabla w=0$ and so $w(t, x)=$ const and again taking into account that the initial conditions are zero, $w(t, x)=0$.

H 2 Let $u \in C^{2}\left(\mathbb{R}^{3}\right)$ be a solution of the partial differential equation

$$
-\Delta u(x)=g(x), \quad x \in \mathbb{R}^{3}
$$

1. Prove that

$$
\frac{1}{r^{2}} \int_{B_{r}(x)} \Delta u(y) d y=\frac{d}{d r}\left(\frac{1}{r^{2}} \int_{\partial B_{r}(x)} u(y) d S_{y}\right)
$$

We have

$$
\int_{B_{r}(x)} \Delta u(y) d y=\int_{\partial B_{r}(x)} \nabla u(y) \cdot \nu d S_{y}=\int_{\partial B_{1}(0)} \nabla u(x+r z) \cdot z d S_{z}
$$

and also

$$
\begin{aligned}
\frac{d}{d r}\left(\frac{1}{r^{2}} \int_{\partial B_{r}(x)} u(y) d S_{y}\right) & =\frac{d}{d r}\left(\frac{1}{r^{2}} \int_{\partial B_{1}(0)} r^{2} u(x+r z) d S_{z}\right) \\
& =\int_{\partial B_{1}(0)} \nabla u(x+r z) \cdot z d S_{z}
\end{aligned}
$$

and from this follows the desired equality.
2. Use this equation to show that

$$
u(x)=\frac{1}{\omega_{3} r^{2}} \int_{\partial B_{r}(x)} u(y) d S_{y}+\int_{0}^{r}\left(\frac{1}{\omega_{3} r^{2}} \int_{B_{r}(x)} g(y) d y\right) d r .
$$

We have

$$
-\frac{1}{\omega_{3} r^{2}} \int_{B_{r}(x)} g(y) d y=\frac{1}{\omega_{3} r^{2}} \int_{B_{r}(x)} \Delta u(y) d y=\frac{d}{d r}\left(\frac{1}{\omega_{3} r^{2}} \int_{\partial B_{r}(x)} u(y) d S_{y}\right)
$$

and so, after integration with respect to r :

$$
\frac{1}{\omega_{3} r^{2}} \int_{\partial B_{r}(x)} u(y) d S_{y}+\int_{0}^{r}\left(\frac{1}{\omega_{3} r^{2}} \int_{B_{r}(x)} g(y) d y\right) d r=\lim _{\epsilon \rightarrow 0^{+}} \int_{\partial B_{\epsilon}(x)} u(y) d S_{y}+C=u(x)+C
$$

from the mean value theorem. Taking $r \rightarrow 0^{+}$in the above equality we get

$$
u(x)+0=u(x)+C
$$

and so $C=0$, which proves the desired result (notice that $G(r)=\frac{1}{\omega_{3} r^{2}} \int_{B_{r}(x)} g(y) d y \rightarrow$ $g(x)$ when $r \rightarrow 0$ and so $\int_{0}^{r} G(r) d r \rightarrow 0$ with $r \rightarrow 0$, when g is a continuous function).

