Partielle Differentialgleichungen

4. Übungen
Lösungsvorschlag

Gruppenübung

G 1 1. Since a, b and c, d lie on the same line parallel to $x=t$, then

$$
\begin{aligned}
a^{x}-a^{t} & =b^{x}-b^{t} \\
c^{x}-c^{t} & =d^{x}-d^{t}
\end{aligned}
$$

Similarly

$$
\begin{aligned}
a^{x}+a^{t} & =d^{x}+d^{t} \\
b^{x}+b^{t} & =c^{x}+c^{t}
\end{aligned}
$$

Therefore

$$
\begin{aligned}
u(a)+u(c) & =\phi\left(a^{x}+a^{t}\right)+\psi\left(a^{x}-a^{t}\right)+\phi\left(c^{x}+c^{t}\right)+\psi\left(c^{x}-c^{t}\right) \\
& =\phi\left(d^{x}+d^{t}\right)+\psi\left(b^{x}-b^{t}\right)+\phi\left(b^{x}+b^{t}\right)+\psi\left(d^{x}-d^{t}\right) \\
& =u(b)+u(d)
\end{aligned}
$$

2. Suppose there are two solutions: u and v and let $w=u-v$. Then the boundary and initial conditions for w vanish. Take any point inside the triange bounded by $t=0$, $x=t, x=l-t$. Then w at this point is zero, from the d'Alambert equation. Next, choose the triangle bounded by $x=t, x=0, x=l-t$. The solution at point inside this triangle is zero, since we can draw a rectangle, whose 3 vertices touch the boundaries at which we know the solution is zero and then use the formula from G1 1. Similarly we extend this reasoning with triangless to the whole strip $[0, l] \times \mathbb{R}_{+}$.
The functions should be of class C^{2} and satisfy the conditions

$$
\begin{aligned}
\alpha(0) & =g(0), \beta(0)=g(l) \\
\alpha^{\prime}(0) & =h(0), \beta^{\prime}(0)=h(l) \\
\alpha^{\prime \prime}(0) & =g^{\prime \prime}, \beta^{\prime \prime}(0)=g^{\prime \prime}(l)
\end{aligned}
$$

(the last equations follow from $u_{t t}=u_{x x}$).
3. Take any point $(\bar{x}, \bar{t}) \in \mathbb{R}^{2}$. The conditions are given along the lines $x=t+1$ and $x=-t+5$, their common point is $(x, t)=(3,2)$. The lines parallel to these, passing through (\bar{x}, \bar{t}) are $x=t+\bar{x}-\bar{t}$ and $x=-t+\bar{x}+\bar{t}$. The points of crossing are $\left(\frac{1}{2}[\bar{x}+\bar{t}+1], \frac{1}{2}[\bar{x}+\bar{t}-1]\right)$ and $\left(\frac{1}{2}[\bar{x}-\bar{t}+5], \frac{1}{2}[\bar{t}-\bar{x}+5]\right)$. Therefore

$$
\begin{aligned}
u(\bar{x}, \bar{t}) & =u\left(\frac{1}{2}[\bar{x}+\bar{t}+1], \frac{1}{2}[\bar{x}+\bar{t}-1]\right)+u\left(\frac{1}{2}[\bar{x}-\bar{t}+5], \frac{1}{2}[\bar{t}-\bar{x}+5]\right)-u(3,2) \\
& =\alpha\left(\frac{1}{2}[\bar{x}+\bar{t}-1]\right)+\beta\left(\frac{1}{2}[\bar{t}-\bar{x}+5]\right)-u(3,2)
\end{aligned}
$$

The obvious condition to satisfy is $u(3,2)=\alpha(2)=\beta(2)$. Moreover, $\alpha, \beta \in C^{2}(\mathbb{R})$. Apart from that the data can be arbitrary.

