Partielle Differentialgleichungen

3. Übung
Lösungsvorschlag

Gruppenübung

G 1 1. We use Schwarz' rule:

$$
\begin{aligned}
v_{t t} & =u_{x t t}+u_{t t t} \\
& =u_{x x x}+u_{t x x}=v_{x x}
\end{aligned}
$$

2.

$$
\begin{aligned}
v_{t} & =2 u_{x} u_{x t}+2 u_{t} u_{t t} \\
v_{t t} & =2 u_{x t}^{2}+2 u_{x} u_{x t t}+2 u_{t t}^{2}+u_{t} u_{t t t} \\
v_{x} & =2 u_{x} u_{x x}+2 u_{t} u_{t x} \\
v_{x x} & =2 u_{x x}^{2}+2 u_{x} u_{x x x}+2 u_{t x}^{2}+2 u_{t} u_{t x x}
\end{aligned}
$$

and so again $v_{t t}=v_{x x}$.
G 2 1. We have

$$
u(t, x)=\hat{u}(\xi, \eta)=\hat{u}(\alpha x+\beta t, \gamma x+\delta t)
$$

and so, using chain rule of differentiation

$$
\begin{aligned}
u_{x} & =\alpha \hat{u}_{\xi}+\gamma \hat{u}_{\eta} \\
u_{x x} & =\alpha^{2} \hat{u}_{\xi \xi}+2 \alpha \gamma \hat{u}_{\xi \eta}+\gamma^{2} \hat{u}_{\eta \eta} \\
u_{t t} & =\beta^{2} \hat{u}_{\xi \xi}+2 \beta \delta \hat{u}_{\xi \eta}+\delta^{2} \hat{u}_{\eta \eta}
\end{aligned}
$$

Plugging these into the wave equation we get

$$
\left(c^{2} \alpha^{2}-\beta^{2}\right) \hat{u}_{\xi \xi}+2\left(c^{2} \alpha \gamma-\beta \delta\right) \hat{u}_{\xi \eta}+\left(c^{2} \gamma^{2}-\delta^{2}\right) \hat{u}_{\eta \eta}=0
$$

The coefficients of $\hat{u}_{\xi \xi}$ and $\hat{u}_{\eta \eta}$ should be equal to zero, while the ones with $\hat{u}_{\xi \eta}$ shouldn't vanish. Thus taking

$$
\begin{aligned}
& \alpha=1, \quad \beta=c \\
& \gamma=-1, \quad \delta=c
\end{aligned}
$$

gives the desired transformation.
2. Transforming the equation with the coefficients found above, we get

$$
-4 c^{2} \hat{u}_{\xi \eta}(\xi, \eta)=\hat{f}(\xi, \eta)
$$

where $\hat{f}(\xi, \eta)=f(x, y)$ and so

$$
\hat{u}_{\xi \eta}=-\frac{1}{4 c^{2}} \hat{f}
$$

The solution to the homogeneous equation $\hat{u}_{\xi \eta}=0$ is $\hat{u}=\phi(\xi)+\psi(\eta)$. Thus the solution to the inhomogeneous equation is

$$
\hat{u}(\xi, \eta)=-\frac{1}{4 c^{2}} \int_{0}^{\xi} \int_{0}^{\eta} \hat{f}(u, v) d u d v+\phi(\xi)+\psi(\eta)
$$

Next we proceed as in the script to obtain the d'Alambert formula

$$
u(t, x)=\frac{1}{2}\left(u^{0}(x+c t)+u^{0}(x-c t)\right)+\frac{1}{2 c} \int_{x-c t}^{x+c t} u^{1}(s) d s+\frac{1}{2 c} \int_{0}^{t} \int_{x-c\left(t-t^{\prime}\right)}^{x+c\left(t-t^{\prime}\right)} f\left(t^{\prime}, x^{\prime}\right) d x^{\prime} d t^{\prime}
$$

G 3 1. We will first prove that $\hat{u} \in C^{2}\left(\mathbb{R} \times \mathbb{R}_{+}\right)$. Computing the derivatives:

$$
\begin{aligned}
& \hat{u}_{x}(t, x)= \begin{cases}u_{x}(t, x) & \text { for } t \geq 0, x \geq 0 \\
u_{x}(t,-x) & \text { for } t \geq 0, x \leq 0,\end{cases} \\
& \hat{u}_{t}(t, x)= \begin{cases}u_{t}(t, x) & \text { for } t \geq 0, x \geq 0 \\
-u_{t}(t,-x) & \text { for } t \geq 0, x \leq 0 .\end{cases}
\end{aligned}
$$

This means that the first derivatives are continuous. Now for the second derivatives:

$$
\begin{aligned}
& \hat{u}_{x x}(t, x)= \begin{cases}u_{x x}(t, x) & \text { for } t \geq 0, x \geq 0 \\
-u_{x x}(t,-x) & \text { for } t \geq 0, x \leq 0,\end{cases} \\
& \hat{u}_{t x}(t, x)= \begin{cases}u_{t x}(t, x) & \text { for } t \geq 0, x \geq 0 \\
u_{t x}(t,-x) & \text { for } t \geq 0, x \leq 0,\end{cases} \\
& \hat{u}_{t t}(t, x)= \begin{cases}u_{t t}(t, x) & \text { for } t \geq 0, x \geq 0 \\
-u_{t t}(t,-x) & \text { for } t \geq 0, x \leq 0 .\end{cases}
\end{aligned}
$$

The mixed derivative is continuous. Taking into consideration the condition

$$
u(t, 0)=0
$$

and differentiating it twice with respect to time we get

$$
u_{t t}(t, 0)=0 .
$$

This means that $\hat{u}_{t t}$ is continuous. From the wave equation we also have

$$
u_{x x}(t, 0)=u_{t t}(t, 0)=0
$$

and so $\hat{u}_{x x}$ is continuous also (the fact that $\left(u^{0}\right)^{\prime \prime}(0)=0$ should be added to assumptions).
The fact that \hat{u} satisfies the wave equation with the given initial conditions is not difficult to check.
2. The d'Alembert formula for \hat{u} is

$$
\hat{u}(t, x)=\frac{1}{2}\left(\hat{u}^{0}(x+c t)+\hat{u}^{0}(x-c t)\right)+\frac{1}{2 c} \int_{x-c t}^{x+c t} \hat{u}^{1}(s) d s .
$$

Therefore

$$
u(t, x)= \begin{cases}\frac{1}{2}\left(u^{0}(x+c t)+u^{0}(x-c t)\right)+\frac{1}{2 c} \int_{x-c t}^{x+c t} u^{1}(s) d s & \text { for } x-c t \geq 0 \\ \frac{1}{2}\left(u^{0}(x+c t)-u^{0}(c t-x)\right)+\frac{1}{2 c} \int_{c t-x}^{x+c t} u^{1}(s) d s & \text { for } x-c t \leq 0 .\end{cases}
$$

