Partielle Differentialgleichungen

\author{

1. Übungen
 Lösungsvorschlag
}

Gruppenübung

G 1 The Burgers' equation

1.

$$
v^{\prime}(s)=u_{x}(t(s), x(s)) t^{\prime}(s)+u_{y}(t(s), x(s)) x^{\prime}(s)
$$

2. The conditions:

$$
t^{\prime}(s)=1, \quad x^{\prime}(s)=u(t(s), x(s))=v(s)
$$

If $v(s)=K$ then

$$
t(s)=s+c_{1}, \quad x(s)=K s+c_{2}
$$

The curve should start at the line $O X$, since we have the initial condition there (i.e. solution is known there). This gives:

$$
t(s)=s, \quad x(s)=K s+x^{0}
$$

But if we plug in $s=0$ then from the initial condition

$$
K=v(0)=u\left(0, x^{0}\right)=u^{0}\left(x^{0}\right)
$$

Therefore $t(s)=s, x(s)=u^{0}\left(x^{0}\right) s+x^{0}$.
3. (a) $t(s)=s, x(s)=s+x^{0}$.
(b) $t(s)=s, x(s)=-s+x^{0}$.
(c)

$$
t(s)=s, x(s)= \begin{cases}s+x^{0} & \text { for } x^{0}<0 \\ \left(1-x^{0}\right) s+x^{0} & \text { for } 0 \leq x^{0}<1 \\ x^{0} & \text { for } 1 \leq x^{0}\end{cases}
$$

(d) All of the above are lines, starting at point $\left(x^{0}, 0\right)$. In (c), the lines which start for $0 \leq x^{0} \leq 1$ all meet at point $(1,1)$. This means that at this point the solution would have to take all values from the interval $[0,1]$, and so it doesn't exist at $(1,1)$.

Hausübung

H 1 In both exercises the solution along the curves is no more constant. We again take $v(s)=$ $u(t(s), x(s))$ and compare the derivative of v to the equation. This gives
1.

$$
t^{\prime}(s)=1, x^{\prime}(s)=\alpha, v^{\prime}(s)=1
$$

The solutions are

$$
t(s)=s, x(s)=\alpha s+x^{0}, v(s)=s+u^{0}\left(x^{0}\right)
$$

If we want to find solution at given point, i.e. $u(\hat{t}, \hat{x})$ then we have solve the equations to find s and x^{0} :

$$
\hat{t}=s, \hat{x}=\alpha s+x^{0}
$$

which gives

$$
s=\hat{t}, x^{0}=\hat{x}-\alpha \hat{t}
$$

and thus $u(\hat{t}, \hat{x})=v(s)=\hat{t}+u^{0}(\hat{x}-\alpha \hat{t})$. This gives an explicit formula for u.
2.

$$
t^{\prime}(s)=1, x^{\prime}(s)=\alpha, v^{\prime}(s)=\beta u(t(s), x(s))=\beta v(s)
$$

Thus the solutions are

$$
t(s)=s, x(s)=\alpha s+x^{0}, v(s)=u^{0}\left(x^{0}\right) e^{\beta s}
$$

Again, if we want to find an explicit formula for $u(\hat{t}, \hat{x})$ we solve the equations

$$
\hat{t}=s, \hat{x}=\alpha s+x^{0}
$$

which gives

$$
s=\hat{t}, x^{0}=\hat{x}-\alpha s
$$

and therefore $u(\hat{t}, \hat{x})=u^{0}(\hat{x}-\alpha s) e^{\beta \hat{t}}$.

