Fachbereich Mathematik Prof. Dr. H.-D. Alber Przemysław Kamiński

TECHNISCHE UNIVERSITÄT DARMSTADT

4.06.2009

Partielle Differentialgleichungen

7. Übung

Gruppenübung

G1 Let $u \in C^3(\Omega)$ be a harmonic function in an open set $\Omega \in \mathbb{R}^n$, i.e.

$$\Delta u(x) = 0 \quad \text{for } x \in \Omega.$$

- 1. Prove that $w(x) = x \cdot \nabla u(x)$ is also harmonic in Ω .
- 2. Prove that

$$\Delta\left(u^2(x)\right) \ge 0, \quad \Delta\left(e^{u(x)}\right) \ge 0.$$

G 2 Let $f: D \to \mathbb{C}$ be a holomorphic function, with $D \subset \mathbb{C}$ and let f(x, y) = u(x, y) + iv(x, y). Then u and v satisfy the *Cauchy-Riemann equations*:

$$u_x = v_y, \quad u_y = -v_x.$$

- 1. Conclude that the functions u and v are harmonic in D.
- 2. Find v if $u(x, y) = xy^3 x^3y$.
- 3. Prove that v is a polynomial if u is a polynomial.

Hausübung

- **H1** Let u be harmonic in \mathbb{R}^n , $x_0 \in \mathbb{R}^n$ and A be an $n \times n$ orthonormal matrix, i.e. $A \cdot A^T = A^T \cdot A = I$. Prove that then $v(x) = u(A(x x_0))$ is also harmonic.
- **H2** Let $u \in C^2(\Omega)$, with $\Omega \subset \mathbb{R}^n$ open and bounded, satisfy the following von Neumann problem

$$-\Delta u(x) = f(x) \quad \text{for } x \in \Omega$$
$$\frac{\partial u}{\partial \nu}(x) = h(x) \quad \text{for } x \in \partial \Omega$$

where $\frac{\partial u}{\partial \nu} = \nabla u \cdot \nu$ is the normal derivative. Prove the *compatibility condition*

$$\int_{\Omega} f(x)dx + \int_{\partial\Omega} h(x)dS_x = 0$$