Partielle Differentialgleichungen

6. Übung

Gruppenübung

G 1 The Euler equations of gas dynamics are

$$
\begin{aligned}
\rho \partial_{t} u+k \rho^{\alpha} \nabla \rho & =0 \\
\partial_{t} \rho+\operatorname{div}(\rho u) & =0
\end{aligned}
$$

with constants $k, \alpha>0$ and with the velocity $u: \mathbb{R} \times \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ and the density $\rho: \mathbb{R} \times \mathbb{R}^{3} \rightarrow$ \mathbb{R}_{+}.

1. Assume that $|u(t, x)|$ is small and that the derivatives $|\nabla u(t, x)|,\left|\partial_{t} u(t, x)\right|$ are small. Assume also that $\rho(t, x)=\rho_{0}+\rho_{1}(t, x)$, where $\rho_{0}>0$ is a constant and where $\left|\rho_{1}(t, x)\right|$ is small with small derivatives. Show that approximately the equations

$$
\begin{align*}
\rho_{0} \partial_{t} u+k \rho_{0}^{\alpha} \nabla \rho_{1} & =0 \tag{1}\\
\partial_{t} \rho_{1}+\rho_{0} \operatorname{div} u & =0 \tag{2}
\end{align*}
$$

hold.
Hint: Drop all expressions, which contain products of small terms and use

$$
\left(\rho_{0}+\rho_{1}\right)^{\alpha}=\sum_{k=0}^{\infty}\binom{\alpha}{k} \rho_{0}^{\alpha-k} \rho_{1}^{k}, \quad\left|\frac{\rho_{1}}{\rho_{0}}\right|<1 .
$$

2. If (1) and (2) hold, prove that ρ_{1} satisfies the wave equation

$$
\partial_{t}^{2} \rho_{1}=c^{2} \Delta \rho_{1}
$$

with $c^{2}=k \rho_{0}^{\alpha}$.
G 2 Using Kirchoff's formula compute the values $u(t, 0)$ for the solution of the initial value problem

$$
\begin{aligned}
u_{t t} & =c^{2} \Delta u \quad \text { for }(t, x) \in \mathbb{R}_{+} \times \mathbb{R}^{3} \\
u(0, x) & =\frac{1}{1+|x|^{2}} \\
u_{t}(0, x) & =0 .
\end{aligned}
$$

G 3 Let u be a C^{2} solution of the inhomogeneous wave equation

$$
u_{t t}(t, x)=\Delta u(t, x)+f(t, x)
$$

for $(t, x) \in[0, T] \times \Omega$, with $\Omega \subset \mathbb{R}^{n}$ being an open and bounded set. Let u satisfy the Neumann boundary condition

$$
\frac{\partial u}{\partial n}(t, x)=h(t, x) \quad \text { for }(t, x) \in[0, T] \times \partial \Omega,
$$

where $\frac{\partial u}{\partial n}(t, x)=\nabla u(t, x) \cdot n(x)$ is the normal derivative of u.

1. Prove that if $\int_{\Omega} u_{t}\left(t^{\star}, x\right) d x=0$ for some $t^{\star} \in[0, T]$ and

$$
\int_{\partial \Omega} h(t, x) d S_{x}=0, \quad \int_{\Omega} f(t, x) d x=0
$$

for all $t \in[0, T]$, then

$$
\int_{\Omega} u_{t}(t, x) d x=0
$$

for all $t \in[0, T]$.
2. Prove that if additionally $\int_{\Omega} u\left(t^{\star \star}, x\right) d x=0$ for some $t^{\star \star} \in[0, T]$, then

$$
\int_{\Omega} u(t, x) d x=0
$$

for all $t \in[0, T]$.

Hausübung

H 1 Let $u\left(t, x_{1}, x_{2}\right)$ be a solution of the two-dimensional wave equation

$$
\begin{aligned}
\partial_{t}^{2} u & =c^{2} \Delta_{2} u, \quad \text { for }(t, x) \in \mathbb{R}_{+} \times \mathbb{R}^{2} \\
u(0, x) & =0 \\
\partial_{t} u(0, x) & =u_{1}(x) .
\end{aligned}
$$

Let $v\left(t, x_{1}, x_{2}, x_{3}\right)$ be the solution of the three-dimensional wave equation

$$
\begin{aligned}
\partial_{t}^{2} v & =c^{2} \Delta_{3} v, \quad \text { for }(t, x) \in \mathbb{R}_{+} \times \mathbb{R}^{3} \\
v\left(0, x_{1}, x_{2}, x_{3}\right) & =0 \\
\partial_{t} v\left(0, x_{1}, x_{2}, x_{3}\right) & =u_{1}\left(x_{1}, x_{2}\right) x_{3} .
\end{aligned}
$$

Prove that

$$
v\left(t, x_{1}, x_{2}, x_{3}\right)=u\left(t, x_{1}, x_{2}\right) x_{3} .
$$

Hint: Prove that

$$
v(t, x)=\frac{1}{2 \pi c} \int_{\left|y^{\prime}-x^{\prime}\right|<c t} \frac{u_{1}\left(y^{\prime}\right) x_{3}}{\sqrt{c^{2} t^{2}-\left|x^{\prime}-y^{\prime}\right|^{2}}} d y^{\prime}
$$

where $x=\left(x_{1}, x_{2}, x_{3}\right), x^{\prime}=\left(x_{1}, x_{2}\right), y^{\prime}=\left(y_{1}, y_{2}\right)$.

