Partielle Differentialgleichungen

5. Übung

Hausübung

H 1 Let u be the solution to the initial-boundary problem

$$
\begin{aligned}
u_{t t} & =c^{2} \Delta u+f \quad \text { for }(t, x) \in \mathbb{R}_{+} \times \Omega \\
u(t, x) & =0 \quad \text { for }(t, x) \in \mathbb{R}_{+} \times \partial \Omega \\
u(0, x) & =u^{0}(x) \quad \text { for } x \in \Omega \\
u_{t}(0, x) & =u^{1}(x) \quad \text { for } x \in \Omega
\end{aligned}
$$

where $\Omega \subset \mathbb{R}^{n}$ is open and bounded. Let

$$
E(t)=\int_{\Omega}\left(u_{t}^{2}+c^{2}|\nabla u|^{2}\right) d x
$$

be the energy at point $t \in \mathbb{R}_{+}$.

1. Prove that if $f=0$ then $E(t)$ is a constant function.

Hint: Compute the derivative and use integration by parts.
2. Prove that the solution with arbitrary f is unique.

Hint: Assume there are two solutions u and v. What initial-boundary problem does the difference $u-v$ satisfy?

H 2 Let $u \in C^{2}\left(\mathbb{R}^{3}\right)$ be a solution of the partial differential equation

$$
-\Delta u(x)=g(x), \quad x \in \mathbb{R}^{3}
$$

1. Prove that

$$
\frac{1}{r^{2}} \int_{B_{r}(x)} \Delta u(y) d y=\frac{d}{d r}\left(\frac{1}{r^{2}} \int_{\partial B_{r}(x)} u(y) d S_{y}\right)
$$

2. Use this equation to show that

$$
u(x)=\frac{1}{\omega_{3} r^{2}} \int_{\partial B_{r}(x)} u(y) d S_{y}+\int_{0}^{r}\left(\frac{1}{\omega_{3} r^{2}} \int_{B_{r}(x)} g(y) d y\right) d r
$$

