Fachbereich Mathematik Prof. Dr. H.-D. Alber Przemysław Kamiński

TECHNISCHE UNIVERSITÄT DARMSTADT

14.05.2009

Partielle Differentialgleichungen

4. Übung

Gruppenübung

G1 Suppose that $u \in C^2(\mathbb{R} \times \mathbb{R}_+)$ solves the wave equation:

$$u_{tt}(x,t) - u_{xx}(x,t) = 0$$
 for $(t,x) \in \mathbb{R} \times \mathbb{R}_+$.

Let $a, b, c, d \in \mathbb{R} \times \mathbb{R}_+$ be the consecutive vertices of a rectangle with sides parallel to the lines x = t and x = -t. Recall that the solution is of the form $u(x,t) = \phi(x+t) + \psi(x-t)$.

2. Prove that there exists at most one solution to the following initial-boundary problem

$$u_{tt} = u_{xx} \text{ for } (x,t) \in (0,l) \times \mathbb{R}_+$$

$$u(0,t) = \alpha(t), \quad u(l,t) = \beta(t)$$

$$u(x,0) = g(x), \quad u_t(x,0) = h(x).$$

What conditions should the functions α, β, g, h satisfy for the solution to be of class $C^2([0, l] \times [0, \infty))$?

3. Goursat's problem

Find the solution to the wave equation $u_{tt} = u_{xx}$ in $\mathbb{R} \times \mathbb{R}$ such that $u(t+1,t) = \alpha(t)$ and $u(-t+5,t) = \beta(t)$. What conditions should the functions α, β satisfy for this solution to be of class $C^2(\mathbb{R}^2)$?

Hausübung

H1 Solve the following initial-boundary problem

$$u_{tt} = u_{xx} \quad \text{for } (x, t) \in \mathbb{R}^2_+$$
$$u(0, x) = x^2$$
$$u_t(0, x) = x$$
$$u(t, 0) = t^2.$$

Hint: Take $w(t, x) = u(t, x) - t^2$ and solve a corresponding inhomogeneous problem for w, using the reflection principle from previous exercises.

H2 Suppose $u \in C^3(\mathbb{R}^n \times \mathbb{R}_+)$ solves the *n*-dimensional wave equation:

$$u_{tt} = \Delta u.$$

Prove that then

$$v(x,t) = x \cdot \nabla u(x,t) + tu_t(x,t)$$

is also a solution to the wave equation (\cdot is the scalar product).

