Partielle Differentialgleichungen

4. Übung

Gruppenübung

G 1 Suppose that $u \in C^{2}\left(\mathbb{R} \times \mathbb{R}_{+}\right)$solves the wave equation:

$$
u_{t t}(x, t)-u_{x x}(x, t)=0 \quad \text { for }(t, x) \in \mathbb{R} \times \mathbb{R}_{+} .
$$

Let $a, b, c, d \in \mathbb{R} \times \mathbb{R}_{+}$be the consecutive vertices of a rectangle with sides parallel to the lines $x=t$ and $x=-t$.
Recall that the solution is of the form $u(x, t)=\phi(x+t)+\psi(x-t)$.

1. Prove that $u(a)+u(c)=u(b)+u(d)$.
2. Prove that there exists at most one solution to the following initial-boundary problem

$$
\begin{aligned}
u_{t t} & =u_{x x} & & \text { for }(x, t) \in(0, l) \times \mathbb{R}_{+} \\
u(0, t) & =\alpha(t), & & u(l, t)=\beta(t) \\
u(x, 0) & =g(x), & & u_{t}(x, 0)=h(x) .
\end{aligned}
$$

What conditions should the functions α, β, g, h satisfy for the solution to be of class $C^{2}([0, l] \times[0, \infty)) ?$

3. Goursat's problem

Find the solution to the wave equation $u_{t t}=u_{x x}$ in $\mathbb{R} \times \mathbb{R}$ such that $u(t+1, t)=\alpha(t)$ and $u(-t+5, t)=\beta(t)$. What conditions should the functions α, β satisfy for this solution to be of class $C^{2}\left(\mathbb{R}^{2}\right)$?

Hausübung

H1 Solve the following initial-boundary problem

$$
\begin{aligned}
u_{t t} & =u_{x x} \quad \text { for }(x, t) \in \mathbb{R}_{+}^{2} \\
u(0, x) & =x^{2} \\
u_{t}(0, x) & =x \\
u(t, 0) & =t^{2} .
\end{aligned}
$$

Hint: Take $w(t, x)=u(t, x)-t^{2}$ and solve a corresponding inhomogeneous problem for w, using the reflection principle from previous exercises.

H2 Suppose $u \in C^{3}\left(\mathbb{R}^{n} \times \mathbb{R}_{+}\right)$solves the n-dimensional wave equation:

$$
u_{t t}=\Delta u .
$$

Prove that then

$$
v(x, t)=x \cdot \nabla u(x, t)+t u_{t}(x, t)
$$

is also a solution to the wave equation (. is the scalar product).

