Partielle Differentialgleichungen

3. Übung

Gruppenübung

G 1 Suppose that u solves the wave equation:

$$
u_{t t}-u_{x x}=0
$$

Prove that

1. $v=u_{x}+u_{t}$
2. $v=u_{x}^{2}+u_{t}^{2}$
also solve the wave equation.
G 2 Suppose that u satisfies the wave equation

$$
u_{t t}=c^{2} u_{x x}
$$

1. Find a linear change of variables

$$
\xi=\alpha x+\beta t, \quad \eta=\gamma x+\delta t
$$

such that the function $\hat{u}(\xi, \eta)=u(t, x)$ satisfies the equation

$$
\hat{u}_{\xi \eta}=0 .
$$

2. Solve then the inhomogeneous problem

$$
\begin{aligned}
u_{t t}-c^{2} u_{x x} & =f \\
u(0, x) & =u^{0}(x) \\
u_{t}(0, x) & =u^{1}(x) .
\end{aligned}
$$

G 3 Suppose that $u \in C^{2}\left(\mathbb{R}_{+} \times \mathbb{R}_{+}\right)$satisfies the wave equation on the half-line:

$$
\begin{aligned}
u_{t t}(t, x) & =u_{x x}(t, x) \quad \text { for }(t, x) \in \mathbb{R}_{+} \times \mathbb{R}_{+} \\
u(0, x) & =u^{0}(x) \quad \text { for } x \in \mathbb{R}_{+} \\
u_{t}(0, x) & =u^{1}(x) \quad \text { for } x \in \mathbb{R}_{+} \\
u(t, 0) & =0
\end{aligned}
$$

with $u^{0}(0)=0, u^{1}(0)=0$. Define

$$
\begin{aligned}
& \hat{u}(t, x)= \begin{cases}u(t, x) & \text { for } t \geq 0, x \geq 0 \\
-u(t,-x) & \text { for } t \geq 0, x \leq 0,\end{cases} \\
& \hat{u}^{0}(x)= \begin{cases}u^{0}(x) & \text { for } x \geq 0 \\
-u^{0}(-x) & \text { for } x \leq 0,\end{cases} \\
& \hat{u}^{1}(x)= \begin{cases}u^{1}(x) & \text { for } x \geq 0 \\
-u^{1}(-x) & \text { for } x \leq 0 .\end{cases}
\end{aligned}
$$

1. Prove that $\hat{u} \in C^{2}\left(\mathbb{R}_{+} \times \mathbb{R}\right)$ and \hat{u} solves the problem

$$
\begin{align*}
\hat{u}_{t t} & =\hat{u}_{x x} \quad \text { for }(t, x) \in \mathbb{R}_{+} \times \mathbb{R} \\
\hat{u}(0, x) & =\hat{u}^{0}(x) \\
\hat{u}_{t}(0, x) & =\hat{u}^{1}(x) .
\end{align*}
$$

2. Write the d'Alambert equations for $(\star \star)$ and then modify them to find an analogous formula for solving (\star).

Hausübung

H 1 Suppose that $g, h \in C^{\infty}\left(\mathbb{R}_{+}\right)$and let

$$
u(t, x)=\sum_{k=0}^{\infty}\left[\frac{t^{2 k}}{(2 k)!} \Delta^{(k)} g(x)+\frac{t^{2 k+1}}{(2 k+1)!} \Delta^{(k)} h(x)\right]
$$

where $\Delta^{(0)} f(x)=f(x), \Delta f(x)=\Delta^{(1)} f(x)=f_{x x}(x)$ and $\Delta^{(k+1)} f(x)=\Delta^{(k)} \Delta f(x)$. Suppose that the series (\dagger) is absolutely convergent for all $(t, x) \in \mathbb{R}_{+} \times \mathbb{R}$ and it can be differentiated two times, term by term, with respect to t and x.

1. Prove that u solves the wave equation $u_{t t}=u_{x x}$ with the initial conditions $u(0, x)=$ $g(x)$ and $u_{t}(0, x)=h(x)$.
2. Solve the wave equation with initial data:
(a) $g(x)=x^{2}, h(x)=1$
(b) $\Delta g(x)=\Delta h(x)=0$
(c) $g(x)=e^{x}, h(x)=e^{-x}$.
