Partielle Differentialgleichungen

12. Übung

Gruppenübung

G 1 Our goal is to find nonzero solutions of the following equation

$$
\Delta u(x, y)=\lambda u(x, y) \quad \text { for }(x, y) \in S=(0,1)^{2}
$$

with the boundary condition

$$
u(x, y)=0 \quad \text { for }(x, y) \in \partial S
$$

1. Assume that the solution is of the form

$$
u(x, y)=X(x) Y(y),
$$

where the functions X and Y are to be determined (this is called separation of variables). Prove that (\star) can be written in the form

$$
\frac{X^{\prime \prime}}{X}=\lambda-\frac{Y^{\prime \prime}}{Y}
$$

and that in fact both sides of the above equality are constant (from this, the functions X and Y will be computed separately).
Hint: Use the fact that if $g(x)=f(y)$ for two independent variables x and y then in fact $g(x)=f(y)=\mu$, where μ is a constant.
2. Using (\dagger) derive the conditions on $X(0), X(1), Y(0)$ and $Y(1)$.
3. Assuming that $X^{\prime \prime}=\mu X$ and $Y^{\prime \prime}=(\lambda-\mu) Y$, solve first the equation for X. Using the conditions on $X(0)$ and $X(1)$ prove that only $\mu<0$ is reasonable.
4. Prove that in fact $\mu=-\pi^{2} k^{2}$, where $k \in \mathbb{N}$ and so we get solutions X_{k}.
5. Solve the equation for Y and similarly, prove that $\lambda-\mu<0$.
6. Using the conditions on $Y(0)$ and $Y(1)$, prove that $\lambda=\lambda_{k, l}=-\pi^{2}\left(k^{2}+l^{2}\right)$, where $k, l \in \mathbb{N}$ and we get solutions Y_{l}.
(The numbers $\lambda_{k, l}$ are called the eigenvalues of the operator Δ acting in S and the functions $u_{k, l}(x, y)=X_{k}(x) Y_{l}(y)$ are called its eigenvectors $)$.

Hausübung

H 1 Similarly, solve the equation (\star) with conditions (\dagger), where $S=(0, a) \times(0, b)$ with $a>0$, $b>0$, i.e. find the eigenvalues and eigenvectors of Δ acting in the rectangle $(0, a) \times(0, b)$.

