Fachbereich Mathematik Prof. Dr. H.-D. Alber Przemysław Kamiński

TECHNISCHE UNIVERSITÄT DARMSTADT

9.07.2009

Partielle Differentialgleichungen

12. Übung

Gruppenübung

G1 Our goal is to find *nonzero* solutions of the following equation

$$\Delta u(x,y) = \lambda u(x,y) \quad \text{for } (x,y) \in S = (0,1)^2 \tag{(\star)}$$

with the boundary condition

$$u(x,y) = 0 \quad \text{for } (x,y) \in \partial S. \tag{(†)}$$

1. Assume that the solution is of the form

$$u(x,y) = X(x)Y(y),$$

where the functions X and Y are to be determined (this is called *separation of varia*bles). Prove that (\star) can be written in the form

$$\frac{X''}{X} = \lambda - \frac{Y''}{Y}$$

and that in fact both sides of the above equality are constant (from this, the functions X and Y will be computed *separately*).

Hint: Use the fact that if g(x) = f(y) for two independent variables x and y then in fact $g(x) = f(y) = \mu$, where μ is a constant.

- 2. Using (\dagger) derive the conditions on X(0), X(1), Y(0) and Y(1).
- 3. Assuming that $X'' = \mu X$ and $Y'' = (\lambda \mu)Y$, solve first the equation for X. Using the conditions on X(0) and X(1) prove that only $\mu < 0$ is reasonable.
- 4. Prove that in fact $\mu = -\pi^2 k^2$, where $k \in \mathbb{N}$ and so we get solutions X_k .
- 5. Solve the equation for Y and similarly, prove that $\lambda \mu < 0$.
- 6. Using the conditions on Y(0) and Y(1), prove that λ = λ_{k,l} = -π²(k² + l²), where k, l ∈ N and we get solutions Y_l. (The numbers λ_{k,l} are called the *eigenvalues* of the operator Δ acting in S and the functions u_{k,l}(x, y) = X_k(x)Y_l(y) are called its *eigenvectors*).

Hausübung

H1 Similarly, solve the equation (\star) with conditions (\dagger) , where $S = (0, a) \times (0, b)$ with a > 0, b > 0, i.e. find the eigenvalues and eigenvectors of Δ acting in the rectangle $(0, a) \times (0, b)$.