Fachbereich Mathematik Prof. Dr. H.-D. Alber Przemysław Kamiński

TECHNISCHE UNIVERSITÄT DARMSTADT

23.04.2009

Partielle Differentialgleichungen

1. Übungen

Gruppenübung

G1 The Burgers' equation

We will study the Burgers' equation

$$u_t(t,x) + u(t,x)u_x(t,x) = 0 \quad \text{for } (t,x) \in \mathbb{R}_+ \times \mathbb{R}$$

$$u(0,x) = u^0(x) \quad \text{for } x \in \mathbb{R}.$$
 (*)

- 1. Define v(s) = u(t(s), x(s)) for $s \in \mathbb{R}_+$ and some differentiable functions t(s) and x(s). Compute the derivative of v.
- 2. Suppose that u is the solution to the initial problem (\star) .
 - (a) What are the conditions on \dot{t} and \dot{x} for v to be a constant function?
 - (b) What is the value of this constant?
 - (c) Write out the functions t and x explicitly.
- 3. Let
 - (a) $u^{0}(x) = 1$, (b) $u^{0}(x) = -1$, (c)

$$u^{0}(x) = \begin{cases} 1 & \text{for } x < 0\\ 1 - x & \text{for } 0 \le x < 1\\ 0 & \text{for } 1 \le x. \end{cases}$$

Draw the curves (x(s), t(s)) for t(0) = 0 and different values of $x(0) \in \mathbb{R}$.

(d) Let u(t, x) be the solution of (\star) with initial condition (c). What is the value u(1, 1)?

Hausübung

H1 Non-homogeneous equations Proceeding similarly as above, find the solutions to the following problems:

1.
$$u_t + \alpha u_x = 1$$
,

2.
$$u_t + \alpha u_x = \beta u$$
,

where $\alpha, \beta \neq 0$ and $u(0, x) = u^0(x)$.