Übung zur Vorlesung Einführung in die Algebra

Prof. Dr. J. H. Bruinier Stephan Ehlen

Sommersemester 2009

Lösungshinweise zu Übungsblatt 4

Aufgabe G4.1 Isomorphe Gruppen

- (a) Da jeder Isomorphismus insbesondere eine Bijektion ist, ist die Behauptung offensichtlich.
- (b) Ist G abelsch, so gilt für alle $x, y \in H$:

$$xy = \phi(\phi^{-1}(xy)) = \phi(\phi^{-1}(x)\phi^{-1}(y)) = \phi(\phi^{-1}(y)\phi^{-1}(x)) = \phi(\phi^{-1}(yx)) = yx$$
.

Also ist auch H abelsch.

(c) Ist *G* zyklisch, so gibt es ein Element $g \in G$ mit $G = \langle g \rangle = \{g^n : n \in \mathbb{Z}\}$. Es gilt

$$H = \phi(G) = \{\phi(g^n) : n \in \mathbb{Z}\} = \{\phi(g)^n : n \in \mathbb{Z}\} = \langle \phi(g) \rangle,$$

(formal wäre das eine Induktion nach n, die keine Schwierigkeiten bereiten sollte) es ist also H zyklisch mit Erzeuger $\phi(g)$.

(d) Sind $x, y \in H$ beide vom neutralen Element $1 \in H$ verschieden, so sind $\phi^{-1}(x)$ und $\phi^{-1}(y)$ beide vom neutralen Element $1 \in G$ verschieden. Nach Voraussetzung existieren also Zahlen $n, m \in \mathbb{Z} \setminus \{0\}$ derart, dass $\phi^{-1}(x)^n = \phi^{-1}(y)^m$. Es ist dann

$$\phi(\phi^{-1}(x)^n) = \phi(\phi^{-1}(x))^n = x^n \tag{1}$$

und analog

$$\phi(\phi^{-1}(y)^m) = y^m. \tag{2}$$

Da die linken Seiten von (1) und (2) nach dem Vorigen übereinstimmen, stimmen auch die rechten Seiten überein, es ist also $x^n = y^m$.

Aufgabe G4.2 Was kann zwei Gruppen unterscheiden?

- (a) \mathbb{R} ist überabzählbar, \mathbb{Q} hingegen abzählbar. Da jeder Isomorphismus insbesondere eine Bijektion ist, können \mathbb{R} und \mathbb{Q} also nicht ismorph sein.
- (b) Jedes nicht-triviale Element $x \in \mathbb{R}$ hat unendliche Ordnung, in S¹ hingegen gibt es das Element -1 von der Ordnung 2. Also können \mathbb{R} und S¹ nicht isomorph sein.
- (c) In \mathbb{Q} haben je zwei von 0 verschiedene Elemente m/n, k/ℓ ein gemeinsames Vielfaches wie in Aufgabe G4.1 (d), da $(kn)(m/n) = km = (m\ell)(k/\ell)$. In \mathbb{Q}^2 hingegen ist dies nicht der Fall.
- (d) Jedes nicht-triviale Element der additiven Gruppe $\mathbb R$ hat unendliche Ordnung, während es in der multiplikativen Gruppe $\mathbb R^\times$ ein nicht-triviales Element endlicher Ordnung gibt (nämlich -1, ein Element der Ordnung 2). Gäbe es einen Isomorphismus $\phi: \mathbb R \to \mathbb R^\times$, wäre $0 = \phi^{-1}(1) = \phi^{-1}((-1)^2) = 2\phi^{-1}(-1)$ mit $\phi^{-1}(-1) \neq 0$, es wäre also $\phi^{-1}(-1)$ ein Element der Ordnung 2 in $\mathbb R$, was unmöglich ist.

Aufgabe G4.3 Untergruppen von \mathbb{Z}

(a) \Leftarrow (b): Sei ggT(m,n) = 1. Klar ist $mn\mathbb{Z} \subset n\mathbb{Z} \cap m\mathbb{Z}$. Ist $a \in n\mathbb{Z} \cap m\mathbb{Z}$, so gilt a = nb = mc mit $a,b \in \mathbb{Z}$ geeignet. Da ggT(m,n) = 1, existieren $x,y \in \mathbb{Z}$, so dass mx + ny = 1 (nach Aufgabe H3.2 (a)). Also erhalten wir, dass

$$c = c(mx + ny)$$

$$= xmc + cny$$

$$= xa + ync$$

$$= xnb + ync$$

$$= (xb + yc)n.$$

Setzen wir $c' := xb + yc \in \mathbb{Z}$, erhalten wir $a = mnc' \in mn\mathbb{Z}$.

(a) \Rightarrow (b): Sei $m\mathbb{Z} \cap n\mathbb{Z} = mn\mathbb{Z}$. Angenommen, es sei ggT(m,n) = k > 1. Dann existieren $r,s \in \mathbb{Z}$, so dass m = rk und n = sk. Dann ist aber $rsk \in m\mathbb{Z} \cap n\mathbb{Z}$, denn rsk = sm = rn, aber $rsk \notin mn\mathbb{Z}$.

Aufgabe G4.4 Abelsche Gruppen und Normalteiler

(a) Da G abelsch ist, erhalten wir für alle Nebenklassen xN, yN von N in G:

$$xNyN = xyN = yxN = yNxN$$
.

Somit is auch G/N abelsch.

(b) Ist G zyklisch, so gilt $G = \langle g \rangle = \{g^n : n \in \mathbb{Z}\}$ für ein Element $g \in G$. Da die Quotientenabbildung $\pi : G \to G/N$ ein Homomorphismus ist, erhalten wir

$$\pi(G) = \{\pi(g^n) : n \in \mathbb{Z}\} = \{\pi(g)^n : n \in \mathbb{Z}\} = \langle \pi(g) \rangle.$$

Es ist somit G/N zyklisch, mit Erzeuger $\pi(g)$.

Aufgabe G4.5 Die Quotientengruppe \mathbb{Q}/\mathbb{Z}

Für $m/n \in \mathbb{Q}$ mit $m, n \in \mathbb{Z}$ ist $n \cdot (m/n) = n \in \mathbb{Z}$, also ist $tor(\mathbb{Q}/\mathbb{Z}) = \mathbb{Q}/\mathbb{Z}$.

Aufgabe G4.6 Inversion

Ist die Inversion ein Gruppenhomomorphismus, so gilt $a^{-1}b^{-1}=(ab)^{-1}=b^{-1}a^{-1}$. Wendet man dies auf a^{-1} und b^{-1} an, so sieht man, dass G abelsch sein muss.

Aufgabe H4.1 Gruppen gerader Ordnung

Ist G eine endliche Gruppe gerader Ordung, so betrachte die Mengen

$$A := \{x \in G : x \neq x^{-1}\}$$
 und $B := \{x \in G : x = x^{-1}\}.$

Dann hat A eine gerade Zahl von Elementen. Schreiben wir nämlich $x \sim y$ für $x, y \in A$ genau dann, wenn x = y oder $y = x^{-1}$, so ist \sim eine Äquivalenzrelation auf A (Nachweis!), deren Äquivalenzklassen $\{x, x^{-1}\}$ je zwei Elemente besitzen. Da A eine disjunkte Vereinigung

$$A = \bigcup_{X \in A/\sim} X$$

zwei-elementiger Mengen ist, ist die Anzahl der Elemente von A gerade,

$$|A| = 2 \cdot |A/\sim|.$$

Die Menge B ist nicht leer (denn $1 \in B$). Da |B| = |G| - |A| gerade ist, muss B also mindestens zwei Elemente besitzen. Es existiert also $x \in B$ mit $x \ne 1$, und dieses Element hat die verlangten Eigenschaften.

Ist nun andererseits G eine endliche Gruppe $ungerader\ Ordnung$, so gibt es kein Element $x \in G$ mit $x \neq 1$ und $x = x^{-1}$. Wäre nämlich x ein solches, so wäre $x^2 = 1$ und daher $\langle x \rangle = \{1, x\}$ eine Gruppe der Ordnung 2. Nach dem Satz von Lagrange müsste nun die Untergruppenordnung 2 die Ordnung von G teilen, diese wäre also eine gerade Zahl, im Widerspruch zur Annahme.

Aufgabe H4.2 Die Diedergruppe D_3

(a) Wir zeigen, dass $H := \{a^i b^j : i \in \{0, 1, 2\}, j \in \{0, 1\}\}$ eine Untergruppe von G ist. Dann ist offensichtlich $H = \langle a, b \rangle$, also H = G (da G per Voraussetzung von G und G erzeugt ist).

Offensichtlich ist $1 = a^0 b^0 \in H$.

Die folgende Beobachtung ist nützlich: Da $ab = ba^2$, haben wir $a^2b = aab = aba^2 = ba^2a^2 = ba^4$ und analog per Induktion

$$a^k b = ba^{2k}$$
 für alle $k \in \mathbb{N}$. (3)

Abgeschlossenheit von H unter der Multiplikation von G: Es seien $a^i b^j$ und $a^k b^\ell \in H$, mit $i, k \in \{0, 1, 2\}$ und $j, \ell \in \{0, 1\}$

Fall j = 0: Dann ist $a^i b^j a^k b^\ell = a^i a^k b^\ell = a^{i+k} b^\ell = a^m b^\ell \in H$, wobei $m \in \{0, 1, 2\}$ mit $m \equiv i + k \pmod{3}$.

Fall j = 1: Dann ist

$$a^{i}b^{j}a^{k}b^{\ell} = a^{i}ba^{k}b^{\ell} = a^{i}ba^{k}\underbrace{bb}_{=1}b^{\ell}\stackrel{(1)}{=}a^{i}bba^{2k}bb^{\ell}$$
$$= a^{i}a^{2k}b^{1+\ell} = a^{i+2k}b^{1+\ell} = a^{r}b^{s} \in H$$

mit $r \in \{0, 1, 2\}$ und $s \in \{0, 1\}$ derart, dass $r \equiv i + 2k \pmod{3}$ und $s \equiv 1 + \ell \pmod{2}$.

Abgeschlossenheit von H unter der Inversion: Gegeben $x = a^i b^j \in H$ gilt

$$x^{-1} = (a^i b^j)^{-1} = b^{-j} a^{-i} = (b^{-1})^j (a^{-1})^i = b^j (a^2)^i = b^j a^{2i} \,.$$

Falls j = 0, ist also $x^{-1} = a^{2i} \in H$. Andernfalls ist $x^{-1} = ba^{2i} = a^ib = x \in H$, wobei (3) benutzt wurde.

(b) Wir betrachten das gleichseitige Dreieck $\Delta \subseteq \mathbb{R}^2$ mit den Ecken (1,0); $(\cos \frac{2\pi}{3}, \sin \frac{2\pi}{3}) = (-\frac{1}{2}, \frac{1}{2}\sqrt{3})$; $(-\frac{1}{2}, -\frac{1}{2}\sqrt{3})$.

Das Dreieck wird von Vielfachen einer 120^0 -Drehung um den Ursprung und von einer Spiegelung an der x-Achse in sich selbst überführt. Wir wählen dadurch motiviert

$$A := \begin{pmatrix} -\frac{1}{2} & -\frac{1}{2}\sqrt{3} \\ \frac{1}{2}\sqrt{3} & -\frac{1}{2} \end{pmatrix}$$

und

$$B := \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

Dann gilt offensichtlich $A^3 = B^2 = E_2$. Weiter ist

$$A^{2} = A^{-1} = \begin{pmatrix} -\frac{1}{2} & \frac{1}{2}\sqrt{3} \\ -\frac{1}{2}\sqrt{3} & -\frac{1}{2} \end{pmatrix}$$

und somit

$$AB = \begin{pmatrix} -\frac{1}{2} & \frac{1}{2}\sqrt{3} \\ \frac{1}{2}\sqrt{3} & \frac{1}{2} \end{pmatrix} = BA^2,$$

wie verlangt. Vergleich der für die Matrizen E_2 , A, A^2 , B, AB und A^2B berechneten Ausdrücke zeigt, dass diese paarweise verschieden sind. Da $D_3:=\langle A,B\rangle$ nach (a) genau die vorigen Elemente enthält, hat diese Gruppe also 6 Elemente, wie verlangt. Die den Elementen von D_3 entsprechenden linearen Abbildungen sind: E_2 - identische Abbildung; A - 120^0 -Drehung; A^2 - 240^0 -Drehung; A^2 - Spiegelung an der A^2 -Spiegelung an der Ursprungsgeraden A^2 -Spi

(c) Offensichtlich sind $\{E_2\}$ und D_3 Untergruppen (und Normalteiler) von D_3 . Ist nun $\{E_2\} \neq H \neq D_3$ eine Untergruppe von D_3 , so existiert ein Element $X \neq E_2$ in H. Ist X = A oder $X = A^2$, so gilt $\langle X \rangle = \{E_2, A, A^2\} \subseteq H$ und somit

$$H = \{E_2, A, A^2\} = \langle A \rangle;$$

weil die Ordnung von H die Gruppenordnung $6 = 2 \cdot 3$ teilt und $\{E_2, A, A^2\}$ bereits 3 Elemente hat, kann nämlich H als echte Untergruppe von G nicht mehr als drei Elemente besitzen. Nach dem Satz von Lagrange hat $\langle A \rangle$ als 3-elementige Untergruppe der 6-elementigen Gruppe D_3 den Index $[G:\langle A \rangle] = |G|: |\langle A \rangle| = 2$. Nach Aufgabe H3.4 (b) ist somit $\langle A \rangle$ ein Normalteiler von D_3 .

Analog sehen wir, dass

$$H = \{E_2, B\}, \quad H = \{E_2, AB\} \quad \text{bzw.} \quad H = \{E_2, A^2B\},$$

falls X = B, X = AB bzw. $X = A^2B$. Genauere Begründung: Falls z.B. $B \in H$, so ist $\langle B \rangle = \{E_2, B\}$ eine Untergruppe der Ordnung 2 von H. Nach dem Satz von Lagrange ist also die Ordnung |H| durch 2 teilbar. Da |H| zudem $|G| = 2 \cdot 3$ teilt, ist nur |H| = 2 (also $H = \{E_2, B\}$) oder |H| = 6 möglich, wobei wir zweiteren Fall durch die Voraussetzung $H \neq D_3$ jedoch ausgeschlossen haben. Also $H = \{E_2, B\}$.

Keine der letzteren drei Untergruppen ist ein Normalteiler, denn es gilt $A\{E_2, B\}A^{-1} \ni ABA^{-1} = A^2B \notin \{E_2, B\}$, $A\{E_2, AB\}A^{-1} \ni AABA^{-1} = A^3B = B \notin \{E_2, AB\}$ und $A\{E_2, A^2B\}A^{-1} \ni A^3BA^{-1} = BA^{-1} = AB \notin \{E_2, A^2B\}$ (was nach Aufgabe G3.3 im Falle eines Normalteilers nicht sein könnte).

(d) Beachte zunächst, dass ϕ wohldefiniert ist, denn nach Teil (b) sind die Elemente A^iB^j mit $i \in \{0,1,2\}, j \in \{0,1\}$ paarweise verschieden.

Nach Teil (a) lässt sich jedes Element $x \in G$ in der Form $a^i b^j$ schreiben mit $i \in \{0, 1, 2\}$ und $j \in \{0, 1\}$. Dann ist $\phi(A^i B^j) = a^i b^j = x$. Somit ist ϕ surjektiv.

Um zu sehen, dass ϕ ein Gruppenhomomorphismus ist, seien $X, Y \in D_3$. Dann ist $X = A^i B^j$ und $Y = A^k B^\ell$ für gewisse (eindeutig festgelegte) $i, k \in \{0, 1, 2\}$ und $j, \ell \in \{0, 1\}$.

Fall j = 0: Dann ist $XY = A^m B^\ell$ und $\phi(X)\phi(Y) = a^i b^j a^k b^\ell = a^m b^\ell = \phi(XY)$ mit m wie im Beweis des Falles j = 0 von Teil (a) (angewandt zweimal, einmal auf die Gruppe D_3 , einmal auf G).

Fall j=1: Dann ist $XY=A^rB^s$ und $\phi(X)\phi(Y)=a^ib^ja^kb^\ell=a^rb^s=\phi(XY)$ mit r,s wie im Beweis des Falles j=1 von Teil (a). Da in beiden möglichen Fällen $\phi(XY)=\phi(X)\phi(Y)$, ist ϕ ein Gruppenhomomorphismus.

Nach dem Homomorphiesatz ist $G \cong D_3/\ker \phi$, wobei $\ker \phi$ ein Normalteiler von D_3 ist und somit nach dem Vorigen

$$\ker \phi \in \{\{E_2\}, \langle A \rangle, D_3\}.$$

Es ist also $G \cong D_3/\{E_2\} \cong D_3$ oder $G \cong D_3/\langle A \rangle \cong \mathbb{Z}/2\mathbb{Z}$ (nach Aufgabe H3.4 (a), da dies eine Gruppe der Primzahlordnung 2 ist), oder $G \cong D_3/D_3 \cong \{E_2\}$ eine triviale Gruppe. Jeder der Fälle kann auftreten, denn für jeden Normalteiler N von D_3 gilt $D_3/N = \langle AN, BN \rangle$, wobei a := AN und b := BN die in (a) formulierten Relationen erfüllen.

Aufgabe H4.3 Alle Gruppen der Ordnung 4

(a) Gegeben $u_1, u_2 \in U, v_1, v_2 \in V$ gilt

$$\alpha((u_1, v_1)(u_2, v_2)) = \alpha(u_1u_2, v_1v_2) = u_1u_2v_1v_2 = u_1v_1u_2v_2 = \alpha(u_1, v_1)\alpha(u_2, v_2),$$

wobei das dritte Gleichheitszeichen gilt, weil G abelsch ist. Somit ist α ein Homomorphismus. Gegeben $u \in U$, $v \in V$ gilt $\alpha(u,v)=1$ genau dann, wenn uv=1, also $u=v^{-1}$. In diesem Falle ist $u=v^{-1} \in U \cap V$ und somit auch $v=u^{-1} \in U \cap V$. Umgekehrt haben wir $u^{-1} \in V$ für jedes $u \in U \cap V$, und $\alpha(u,u^{-1})=uu^{-1}=1$. Es ist also $\ker \alpha = \{(u,u^{-1}): v \in U \cap V\}$.

(b) Es sei G eine Gruppe der Ordnung 4. Nach dem Satz von Lagrange kann die Ordnung eines Elements $x \in G$ nur 1, 2 oder 4 sein, denn sie teilt die Gruppenordnung.

Gibt es eine Element $x \in G$ der Ordnung 4, so hat $\langle x \rangle$ vier Elemente, weswegen $G = \langle x \rangle$ eine zyklische Gruppe der Ordnung 4 ist, somit isomorph zu $\mathbb{Z}/4\mathbb{Z}$ nach Vorlesung und klarerweise abelsch.

Andernfalls hat jedes Element $x \in G$ die Ordnung 1 oder 2, es gilt also stets $x^2 = 1$. Daher ist G abelsch nach Aufgabe H2.1 (a).

(c) Wir wissen schon: Falls G zyklisch ist, so ist G isomorph zu $\mathbb{Z}/4\mathbb{Z}$.

Wählen wir nun zwei vom Neutralelement verschiedene Elemente $x \neq y$ in G, so gilt $U := \langle x \rangle = \{1, x\}$, $V := \langle y \rangle = \{1, y\}$, also $U \cap V = \{1\}$. Der Homomorphismus $\alpha \colon U \times V \to G$ aus (a) hat Kern $\ker \alpha = \{(u, u^{-1}) \colon u \in U \cap V\} = \{1\}$, er ist also injektiv. Da sowohl $U \times V$ als auch G jeweils 4 Elemente haben, muss die injektive Abbildung α surjektiv sein. Als bijektiver Gruppenhomomorphismus ist α ein Isomorphismus, also $G \cong U \times V = \langle x \rangle \times \langle y \rangle \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$.

Aufgabe H4.4 Die Gruppe $GL_n(\mathbb{F})$

Es sei $n \in \mathbb{N}$ und \mathbb{F} ein endlicher Körper mit q Elementen.

(a) Wir verfahren gemäß der gegebenen Anleitung: Jede Spalte s einer Matrix $A \in M_n(\mathbb{F})$ ist ein Vektor in \mathbb{F}^n , es gibt also $|\mathbb{F}|^n = q^n$ Möglichkeiten für s. Sind s_1, \ldots, s_n die Spalten von A und soll $A \in \operatorname{GL}_n(\mathbb{F})$ sein, so muss $s_1 \neq 0$ sein, es bleiben also $q^n - 1$ Möglichkeiten für s_1 . Für gewähltes s_1 sollen s_1, s_2 linear unabhängig sein, also $s_2 \notin \mathbb{F} s_1$, was q Möglichkeiten für s_2 ausschließt; es verbleiben $q^n - q$. Weiter darf s_3 nicht im Spann $\mathbb{F} s_1 + \mathbb{F} s_2$ von s_1 und s_2 sein, welcher q^2 Elemente hat; es verbleiben $q^n - q^2$ Möglichkeiten für s_3 . Analog haben wir zu bereits gewählten linear unabhängigen Spalten s_1, \ldots, s_{k-1} genau $q^n - q^{k-1}$ Möglichkeiten, die nächste Spalte s_k zu wählen (wobei $k \leq n$). Insgesamt gibt es für $A \in \operatorname{GL}_n(\mathbb{F})$ also

$$|\mathrm{GL}_n(\mathbb{F})| = (q^n - 1)(q^n - q) \cdots (q^n - q^{n-1}) = \prod_{i=0}^{n-1} (q^n - q^i)$$

Möglichkeiten.

(b) Gegeben $t \in \mathbb{F}^{\times}$ haben wir det A = t für die Diagonalmatrix $A \in GL_n(\mathbb{F})$ mit Diagonaleinträgen t, 1, ..., 1. Also ist det ein surjektiver Homomorphismus und es gilt mit 1. Homomorphiesatz

$$\mathbb{F}^{\times} = \operatorname{im} \operatorname{det} \cong \operatorname{GL}_n(\mathbb{F}) / \operatorname{ker} \operatorname{det} = \operatorname{GL}_n(\mathbb{F}) / \operatorname{SL}_n(\mathbb{F}).$$

(c) Nach dem Satz von Lagrange gilt

$$\begin{aligned} (q^n-1)\cdots(q^n-q^{n-1}) &= |\mathrm{GL}_n(\mathbb{F})| = [\mathrm{GL}_n(\mathbb{F}):\mathrm{SL}_n(\mathbb{F})] \cdot |\mathrm{SL}_n(\mathbb{F})| = |\mathbb{F}^\times| \cdot |\mathrm{SL}_n(\mathbb{F})| \\ &= (q-1)|\mathrm{SL}_n(\mathbb{F})|, \end{aligned}$$

somit

$$|\operatorname{SL}_n(\mathbb{F})| = (q-1)^{-1}(q^n-1)\cdots \overbrace{(q^n-q^{n-1})}^{=q^{n-1}(q-1)} = q^{n-1}\prod_{i=0}^{n-2}(q^n-q^i).$$