Übung zur Vorlesung Einführung in die Algebra

Prof. Dr. J. H. Bruinier Stephan Ehlen

Sommersemester 2009

Übungsblatt 3

Aufgabe G3.1 Automorphismen von \mathbb{Z}

Bestimmen Sie alle Automorphismen der Gruppe (\mathbb{Z}^2 , +). Können Sie daraus herleiten, was die Automorphismengruppe von (\mathbb{Z}^n , +) ist?

Aufgabe G3.2 Eine von zwei Elementen erzeugte Gruppe

Es sei G eine Gruppe, welche von zwei Elementen $a, b \in G$ erzeugt wird, die miteinander vertauschen, d.h. ab = ba.

- (a) Zeigen Sie, dass $G = \{a^i b^j : i, j \in \mathbb{Z}\}.$
- (b) Zeigen Sie, dass G abelsch ist.

Aufgabe G3.3 Normalteiler

Sei G eine Gruppe und $N \subset G$ eine Untergruppe. Zeigen Sie, dass folgende Aussagen äquivalent sind:

- (a) N ist Normalteiler.
- (b) Für alle $g \in G$ gilt $gNg^{-1} = N$.
- (c) Für alle $g \in G$ gilt $gNg^{-1} \subset N$.

Aufgabe G3.4 Die Quaternionengruppe

Im folgenden überlegen wir uns, dass auch in nichtabelschen Gruppen jede Untergruppe ein Normalteiler sein kann. Die *Quaternionengruppe* ist definiert als

$$Q := \{ \pm E, \pm I, \pm J, \pm K \} \subset GL_2(\mathbb{C}),$$

wobei

$$I = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}, \quad J = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \quad K = IJ.$$

- (a) Zeigen Sie, dass Q nicht abelsch ist.
- (b) Zeigen Sie, dass alle Untergruppen von Q Normalteiler sind. Tipp: Benutzen Sie hier bereits Aufgabe H3.4 (b).

Aufgabe G3.5 Permutationsdarstellung

Sei $G = \{g_1, \dots, g_n\}$ eine endliche Gruppe und S_n bezeichne die symmetrische Gruppe einer n-elementigen Menge.

(a) Zu $g \in G$ definieren wir $\sigma_g \in S_n$, so dass $gg_i = g_{\sigma_g(i)}$ für i = 1, ..., n gilt. Zeigen Sie, dass die Abbildung

$$\rho: G \to S_n, \quad g \mapsto \sigma_g$$

ein Gruppenhomomorphismus ist.

(b) Zeigen Sie, dass jede endliche Gruppe isomorph zu einer Untergruppe der symmetrischen Gruppe S_n ist.

Aufgabe H3.1 Rechnen mit Kongruenzen; $\mathbb{Z}/m\mathbb{Z}$

Sei m > 1 eine natürliche Zahl.

- (a) Finden Sie ein Repräsentantensystem für die Quotientengruppe $\mathbb{Z}/m\mathbb{Z}$.
- (b) Wir definieren außerdem eine Multiplikation auf $\mathbb{Z}/m\mathbb{Z}$ durch

$$(x + m\mathbb{Z}) \cdot (y + m\mathbb{Z}) = xy + m\mathbb{Z}.$$

Zeigen Sie, dass diese Definition unabhängig von der Wahl der Vertreter $x, y \in \mathbb{Z}$ ist und dass $(\mathbb{Z}/m\mathbb{Z}, \cdot, 1)$ ein Monoid ist.

Bemerkung: Es gelten auch die üblichen Distributivgesetze und so wird $\mathbb{Z}/m\mathbb{Z}$ mit Addition und Multiplikation zu einem Ring.

- (c) Ein Element a eines Monoids M heißt Nullteiler, falls ein $b \in M$, $b \ne 0$ existiert, so dass ab = 0 oder ba = 0. Für welche natürlichen Zahlen m > 1 bezitzt $\mathbb{Z}/m\mathbb{Z}$ keine Nullteiler außer der 0?
- (d) Für welche m > 1 ist $(\mathbb{Z}/m\mathbb{Z}) \setminus \{0\}, \cdot)$ eine Gruppe? Überlegen Sie hierzu, wann für jedes $x + m\mathbb{Z} \in \mathbb{Z}/m\mathbb{Z}$ die Multiplikationsabbildung $y + m\mathbb{Z} \mapsto xy + m\mathbb{Z}$ bijektiv ist. Bemerkung: Wir haben (fast) gezeigt, dass in diesen Fällen $\mathbb{Z}/m\mathbb{Z}$ sogar ein Körper ist.

Aufgabe H3.2 Additive Darstellung des ggT; Erzeuger zyklischer Gruppen

- (a) Die Zahlen $k_1, k_2 \in \mathbb{Z}$ seien nicht beide 0. Machen Sie sich klar, dass k_1 und k_2 genau dann teilerfremd sind (also den größten gemeinsamen Teiler 1 haben), wenn es $a, b \in \mathbb{Z}$ gibt mit $ak_1 + bk_2 = 1$
- (b) Gegeben $n \in \mathbb{N}$ sei $C_n := \{z \in \mathbb{C} : z^n = 1\}$ die Gruppe der n-ten Einheitswurzeln. Für welche $k \in \{0, 1, ..., n-1\}$ erzeugt die n-te Einheitswurzel

$$\zeta := e^{\frac{2\pi i k}{n}}$$

die Gruppe C_n ?

Aufgabe H3.3 Gruppenhomomorphismus

Gegeben seien eine Gruppe G und Elemente $g,h \in G$. Wann existiert ein Gruppenhomomorphismus

$$\phi: \mathbb{Z}^2 \to G$$
 mit $\phi(1,0) = g$ und $\phi(0,1) = h$,

d.h. welche Bedingung müssen die beiden Elemente erfüllen?

Aufgabe H3.4 Nebenklassen und Normalteiler

- (a) Sei G eine endliche Gruppe mit |G| = p eine Primzahl. Zeigen Sie, dass G zyklisch ist.
- (b) Sei G eine Gruppe und $H \subset G$ eine Untergruppe vom Index 2 (d.h. [G:H] = 2). Zeigen Sie, dass H ein Normalteiler von G ist.
- (c)* Gilt dies auch, falls [G:H] = 3 ist?

Aufgabe H3.5 Freiwillige Zusatzaufgabe: Elemente der Ordnung p

Es sei G eine endliche Gruppe und p eine Primzahl. G habe genau n Elemente der Ordnung p. Zeigen Sie, dass entweder n=0 ist oder n+1 durch p teilbar ist.

Hinweis: Eine Möglichkeit besteht darin, dass Sie die Menge $S = \{(a_0, \dots, a_{p-1}) \in G^p : a_0 \dots a_{p-1} = 1\}$ betrachten und zeigen, dass S stabil ist unter zyklischen Permutationen. Dies liefert Ihnen eine Äquivalenzrelation auf S.

Hinweis: Die Hausaufgaben sind die mit dem Buchstaben "H" gekenzeichneten Aufgaben. Aufgaben, die mit einem * gekennzeichnet sind, sind freiwillige Zusatzaufgaben. Die bearbeiteten Aufgaben werden am 26. bzw. 27.5. zu Beginn der Übungen abgegeben. *Bitte versehen Sie jedes Blatt mit Ihrem Namen*.