Prof. Dr. M. Hieber Robert Haller-Dintelmann Tobias Hansel

WS 08/09 18./19.11.2008

Analysis III – Gewöhnliche Differentialgleichungen

3. Übung mit Lösungshinweisen

Gruppenübungen

(G 1) (Gleichgradige Stetigkeit)

(a) Sei $[a,b] \subset \mathbb{R}$ und M>0 eine Konstante. Zeigen Sie, dass die Menge

$$\mathcal{F}_1 = \{ f \in C^1([a, b], \mathbb{R}) : |f'(x)| \le M \text{ für alle } x \in [a, b] \}$$

gleichgradig stetig ist.

(b) Welche der folgenden Teilmengen von $C([0,1],\mathbb{R})$ sind gleichgradig stetig? Welche sind relativ kompakt?

$$\mathcal{F}_2 = \{ f : f(x) = x^{\alpha}, 1 \le \alpha < 2 \}$$

$$\mathcal{F}_3 = \{ f : f(x) = x^{\alpha}, 0 < \alpha < \infty \}$$

$$\mathcal{F}_4 = \{ f : f(x) = n \cos\left(\frac{1}{n}x\right), n \in \mathbb{N} \}$$

- LÖSUNG: (a) Da für jedes $f \in \mathcal{F}_1$ die Ableitung durch M > 0 beschränkt ist, folgt aus dem Mittelwertsatz, dass $|f(x) f(y)| \le M|x y|$ für alle $x, y \in [a, b]$, d.h. jedes $f \in \mathcal{F}_1$ ist Lipschitz-stetig mit Lipschitzkonstante L = M. Für jedes vorgegebene $\varepsilon > 0$ können wir also $\delta = \varepsilon/L$ wählen und erhalten $|f(x) f(y)| < \varepsilon$ für alle $|x y| < \delta$ und alle $f \in \mathcal{F}_1$. Somit ist \mathcal{F}_1 gleichgradig stetig.
 - (b) 1. Für jedes $f \in \mathcal{F}_2$ gilt $|f(t)| = |t^{\alpha}| \le 1$ für $t \in [0,1]$ und $1 \le \alpha < 2$. Somit ist \mathcal{F}_2 gleichmäßig beschränkt. Außerdem gilt für jedes $f \in \mathcal{F}_2$, dass $|f'(t)| = |\alpha t^{\alpha-1}| \le 2$ für $t \in [0,1]$ und $1 \le \alpha < 2$. Nach dem Mittelwertsatz der Differentialrechnung ist jedes $f \in \mathcal{F}_2$ Lipschitz-stetig auf [0,1] mit Lipschitzkonstante L = 2. Somit ist \mathcal{F}_2 gleichgradig stetig. Nach Arzelà-Ascoli ist \mathcal{F}_2 relativ kompakt.
 - 2. Betrachte die Funktionenfolge $(f_n)_n \subset \mathcal{F}_3$ definiert durch $f_n(t) = t^n$. Jede Teilfogle von $(f_n)_n$ konvergiert punktweise gegen die unstetige Funktion

$$f(t) = \begin{cases} 0, & \text{falls } t \in [0, 1), \\ 1, & \text{falls } t = 1. \end{cases}$$

Somit besitzt $(f_n)_n$ keine gleichmäßig konvergente Teilfolge, d.h. \mathcal{F}_3 ist nicht relativ kompakt. Da \mathcal{F}_3 gleichmäßig beschränkt ist (zeigt man analog zu 1.), folgt aus Arzelà-Ascoli, dass \mathcal{F}_3 nicht gleichgradig stetig ist.

3. Für jedes $f \in \mathcal{F}_4$ gilt $|f'(t)| = |-\sin\left(\frac{1}{n}t\right)| \le 1$ für $t \in [0,1]$ und $n \in \mathbb{N}$. Nach dem Mittelwertsatz der Differentialrechnung ist jedes $f \in \mathcal{F}_4$ Lipschitz-stetig auf [0,1] mit Lipschitzkonstante L = 1. Somit ist \mathcal{F}_4 gleichgradig stetig. Allerdings ist \mathcal{F}_4 nicht gleichmäßig beschränkt, da $f_n(0) := n\cos\left(\frac{1}{n}0\right) \to \infty$ für $n \to \infty$. Somit ist \mathcal{F}_4 nicht relativ kompakt.

(G 2)

Es sei $D = \{(t, y) \in \mathbb{R}^2 : t^2 + y^2 < 1\}$ und $f : D \to \mathbb{R}$ definiert durch

$$f(t,y) = \sin\left(\frac{1}{1 - (t^2 + y^2)}\right).$$

- (a) Zeigen Sie, dass das Anfangswertproblem y' = f(t, y), y(0) = 0 eindeutig lösbar ist.
- (b) Es sei $u:(t_-,t_+)\to\mathbb{R}$ die maximale Lösung des Anfangswertproblems aus Teil (a). Zeigen Sie:
 - 1. $-t_{-}=t_{+}$;
 - 2. $\lim_{t \nearrow t_+} u(t)$ existiert;
 - 3. $\lim_{t \nearrow t_{+}} t^{2} + u^{2}(t) = 1$.

LÖSUNG: (a) Die Funtion $f: D \to \mathbb{R}$ ist stetig und

$$\frac{\partial}{\partial y} f(x, y) = \cos\left(\frac{1}{1 - (t^2 + y^2)}\right) \frac{1}{(1 - (t^2 + y^2))^2}.$$

Für $0 < \lambda < 1$ definieren wir $D_{\lambda} := \{(t, y) \in \mathbb{R}^2 : t^2 + y^2 \le \lambda\}$. Für alle $(t, y) \in D_{\lambda}$ gilt nun

$$\left| \frac{\partial}{\partial y} f(x, y) \right| \le \frac{1}{(1 - \lambda)^2}.$$

Nach dem Mittelwertsatz genügt f auf D_{λ} einer Lipschitzbedingung. Da für jeden Punkt $(t,y) \in D$ ein $0 < \lambda < 1$ existiert mit $(t,y) \in D_{\lambda}$, folgt dass f einer lokalen Lipschitzbedingung auf D genügt. Der lokale Satz von Picard Lindelöf garantiert nun die Existenz und Eindeutigkeit einer Lösung des Anfangswertproblems y' = f(t,y), y(0) = 0 auf einer Umgebung U von (0,0).

(b) 1. Es sei $u:(t_-,t_+)\to\mathbb{R}$ die maximale Lösung des Anfangswertproblems aus Teil (a). Es ist klar, dass $-1\leq t_-<0< t_+\leq 1$ gilt. Wir nehmen nun an, dass: $-t_+< t_-$ (der Fall $-t_+>t_-$ geht analog). Für $t\in (-t_+,-t_-)$ ist z(t):=-u(-t) eine Lösung des AWP aus Teil (a), da f eine

Für $t \in (-t_+, -t_-)$ ist z(t) := -u(-t) eine Lösung des AWP aus Teil (a), da f eine gerade Funktion ist. Wegen der Eindeutigkeit der Lösung muss z(t) = u(t) für alle $t \in (t_-, -t_-)$ gelten. Nun ist aber die Funktion $\tilde{u} : (-t_+, t_+) \to \mathbb{R}$ gegeben durch

$$\tilde{u}(t) = \begin{cases} -u(-t), & t \in (-t_+, t_-], \\ u(t), & t \in (t_-, t_+) \end{cases}$$

ebenfalls eine Lösung des AWP, die u nach links fortsetzt. Dies widerspricht der Maximalität von u. Also muss $-t_+=t_-$ gelten.

2. Da $|f(t,y)| \leq 1$ für alle $(t,y) \in D$, folgt aus dem Mittelwertsatz, dass $u: (-t_+, t_+) \to \mathbb{R}$ Lipschitz-stetig und somit insbesondere gleichmäßig stetig ist. Also existiert $\alpha := \lim_{t \nearrow t_+} u(t)$. 3. Beachte, dass $\lim_{t \nearrow t_+} t^2 + u^2(t) = t_+^2 + \alpha^2$. Wir nehmen an, dass $t_+^2 + \alpha^2 < 1$, d.h. der Punkt (t_+, α) liegt im Inneren von \overline{D} . Dann exisitiert eine Lösung $v : [t_+, t_+ + \varepsilon) \to \mathbb{R}$ des Anfangswertproblems $y' = f(t, y), \ y(t_+) = \alpha$. Nun ist aber

$$\tilde{u}(t) = \begin{cases} u(t), & t \in (-t_+, t_+], \\ v(t), & t \in [t_+, t_+ + \varepsilon) \end{cases}$$

eine Fortsetzung der Lösung u nach rechts, was aber ein Widerspruch zur Maximalität ist. Somit ist $t_+^2 + \alpha^2 = 1$, d.h $(t_+, \alpha) \in \partial D$.

(G 3) (Modellierung)

Durch das Land Sisylana (die x-y-Ebene) fließt ein Fluß, dessen Ufer durch x=0 und x=1 gegeben sind. Er fließt mit konstanter Geschwindigkeit v_0 in positive y-Richtung. Ein Hund springt im Punkt (1,0) in den Fluß und versucht, sein Herrchen zu erreichen, das in (0,0) auf ihn wartet. Der Hund schwimmt mit konstanter Geschwindigkeit v_1 und richtet sich immer genau auf sein Herrchen, während er abgetrieben wird. Bestimmen Sie die Kurve $y=\varphi(x)$, die der Hund zurücklegt. Wird er das Ufer x=0 erreichen? Wo? Hinweis: $\int \frac{1}{\sqrt{1+z^2}} dx = \arcsin z$ und $\sinh x = 1/2(e^x - e^{-x})$.

LÖSUNG: Es ist

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = v_0 \begin{pmatrix} 0 \\ 1 \end{pmatrix} - \frac{v_1}{\sqrt{x^2 + y^2}} \begin{pmatrix} x \\ y \end{pmatrix},$$

das heißt

$$x' = -\frac{v_1 x}{\sqrt{x^2 + y^2}}, \ y' = v_0 - \frac{v_1 y}{\sqrt{x^2 + y^2}}.$$

Es folgt

$$\frac{\partial}{\partial x}y(x) = \frac{y'}{x'} = -\frac{v_0}{v_1}\sqrt{1+(\frac{y}{x})^2} + \frac{y}{x}.$$

Diese Gleichung hat die Form $y' = f(\frac{y}{x})$. Wir setzen u := y/x und wir haben nun die Gleichung

$$u' = \frac{1}{x}(-\alpha\sqrt{1+u^2}) \text{ mit } \alpha = \frac{v_0}{v_1}$$

zu lösen (vgl. Kapitel I, Beispiel 2.3). Trennung der Variablen ergibt

$$-\frac{1}{\alpha} (arcsinh \ u(x) - arcsinh \ u(1)) = -\frac{1}{\alpha} \int_{u(1)}^{u(x)} \frac{1}{\sqrt{1+z^2}} dz = \int_1^x \frac{1}{t} dt = \ln(x)$$

also ergibt sich mit der Anfangsbedingung u(1) = 0

$$u(x) = \sinh(-\alpha \ln x) = \frac{1}{2}(x^{-\alpha} - x^{\alpha}).$$

Somit folgt $y(x) = \frac{1}{2}(x^{1-\alpha} - x^{1+\alpha})$. Ist $\alpha > 1$, so folgt $\lim_{x\to 0} y(x) = \infty$, das heißt der Hund treibt ab. Ist $\alpha = 1$, so gilt $\lim_{x\to 0} y(x) = \frac{1}{2}$, das heißt der Hund erreicht vielleicht das Ufer, aber nicht bei seinem Herrchen. Ist $\alpha < 1$, so gilt $\lim_{x\to 0} y(x) = 0$, das heißt der Hund erreicht sein Herrchen.

Hausübungen

(H 1) (Flüsse)

Sei $I = [0, \tau] \subset \mathbb{R}$ und $f \in C(\mathbb{R}^n, \mathbb{R}^n)$ eine stetige Funktion, die einer globalen Lipschitzbedingung genügt. Zeigen Sie, dass es einen stetigen Fluss $v: I \times \mathbb{R}^n \to \mathbb{R}^n$ gibt, so dass für jedes $x \in \mathbb{R}^n$ die Abbildung $t \mapsto v(t, x)$ eine Lösung des Anfangswertproblems $y'(t) = f(y(t)), \ y(0) = x$ ist.

LÖSUNG: Nach dem globalen Satz von Picard Lindelöf exisitiert für jedes $x \in \mathbb{R}^n$ eine Lösung $u_x: I \to \mathbb{R}^n$ des Anfangswertproblems $y'(t) = f(y(t)), \ y(0) = x$. Somit können wir den Fluss $v: I \times \mathbb{R}^n \to \mathbb{R}^n$ durch $v(t,x) := u_x(t)$ definieren. Bleibt noch die Stetigkeit von v zu zeigen. Sei nun $\varepsilon > 0$ vorgegeben. Beachte, dass für festes $x \in \mathbb{R}^n$ die Funktion $t \mapsto v(t,x)$ als Lösung des Anfangswertproblems $y'(t) = f(y(t)), \ y(0) = x$ insbesondere stetig ist. Das heißt es exisitiert ein $\delta > 0$, so dass $||v(t,x)-v(s,x)|| \le \varepsilon/2$ für alle $|t-s| \le \delta$. Aus Kapitel II, Satz 1.12 (Abhängigkeit von den Daten) folgt, dass für $x, y \in \mathbb{R}^n$ und festes $s \in I$ die Abschätzung

$$\sup_{s \in [0,\tau]} \|v(s,x) - v(s,y)\| \le \frac{e^{(L+1)\tau}}{1-c} \|x - y\|$$

gilt. Wählen wir also

$$||x - y|| \le \frac{1 - c}{e^{(L+1)\tau}} \cdot \frac{\varepsilon}{2}$$
, und $|t - s| \le \delta$

so erhalten wir

$$||v(t,x) - v(s,y)|| \le ||v(t,x) - v(s,x)|| + ||v(s,x) - v(s,y)|| \le \varepsilon.$$

(H 2)

Sei $I \subset [0,1]$ ein hinreichend kleines Intervall. Zeigen Sie: Es gibt eine differenzierbare Funktion $u: I \to \mathbb{R}$ mit u(0) = 0 und

$$u'(t) = \sum_{k=0}^{\infty} \left(\frac{t}{2}\right)^k \cos(2^k u(t)), \qquad t \in I.$$

Zeigen Sie, dass für jede solche Funktion

$$|u(t)| \le 2 \cdot \ln\left(\frac{2}{2-t}\right), \qquad t \in I,$$

gilt.

LÖSUNG: Beachte, dass die Reihe

$$\sum_{k=0}^{\infty} \left(\frac{t}{2}\right)^k \cos(2^k y)$$

für alle $(t,y) \in [0,1] \times \mathbb{R}$ konvergiert. Wir definieren $f:[0,1] \times \mathbb{R} \to \mathbb{R}$ durch

$$f(t,y) = \sum_{k=0}^{\infty} \left(\frac{t}{2}\right)^k \cos(2^k y)$$

und $f_n: [0,1] \times \mathbb{R} \to \mathbb{R}$ durch

$$f_n(t,y) = \sum_{k=0}^n \left(\frac{t}{2}\right)^k \cos(2^k y).$$

Die Funktionen f_n , $n \in \mathbb{N}$, sind stetig auf $[0,1] \times \mathbb{R}$. Wir berechnen

$$|f(t,y) - f_n(t,y)| = |\sum_{k=n+1}^{\infty} \left(\frac{t}{2}\right)^k \cos(2^k y)| \le \sum_{k=n+1}^{\infty} \frac{1}{2}^k.$$

Somit konvergiert die Folge $(f_n)_n$ gleichmäßig auf $[0,1] \times \mathbb{R}$ gegen f. Daher ist $f : [0,1] \times \mathbb{R} \to \mathbb{R}$ stetig und der Satz von Peano garantiert auf einer hinreichend kleinen Umgebung U von (0,0) die Existenz einer Lösung des Anfangswertproblems

$$y'(t) = \sum_{k=0}^{\infty} \left(\frac{t}{2}\right)^k \cos(2^k y(t)), \quad y(0) = 0.$$

Nun sei $u:I\to\mathbb{R}$ die Lösung dieses Anfangswertproblems. Es gilt

$$|u'(t)| = |f(t, u(t))| \le \sum_{k=0}^{\infty} \left(\frac{t}{2}\right)^k = \frac{2}{2-t}.$$

Somit erhalten wir

$$|u(t)| = |\int_0^t u'(s) \, ds| \le \int_0^t \frac{2}{2-s} \, ds = 2 \cdot \ln\left(\frac{2}{2-t}\right)$$

für alle $t \in I$.

(H 3) (Maximale Lösung)

(a) Sei $f: \mathbb{R} \times \mathbb{R} \to (0, \infty)$ eine stetige Abbildung, die lokal einer Lipschitzbedingung genügt. Zeigen Sie: Für eine maximale Lösung

$$u:(t_-,t_+)\to\mathbb{R}, \text{ von } y'=f(t,y)$$

gilt $t_{+} = \infty$ oder $\lim_{t \to t_{+}} |u(t)| = +\infty$.

(b) Sei $f: \mathbb{R} \to (0, \infty)$ eine stetige Funktion, die lokal einer Lipschitzbedingung genügt und sei $t_0, y_0 \in \mathbb{R}$. Zeigen Sie:

$$y'(t) = f(y), \ y(t_0) = y_0 \text{ hat eine Lösung auf } [t_0, \infty) \iff \int_{y_0}^{\infty} \frac{1}{f(\xi)} \ d\xi = \infty.$$

Bemerkung: Die Aussage in Teil (a) gilt auch für Funktionen $f: \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^n$. Vergleichen Sie die Aussage in Teil (a) mit (G2) (b).

LÖSUNG: (a) Sei $t_+ < \infty$. Annahme: Es gibt ein $\varepsilon > 0$, so dass u'(t) beschränkt ist auf $[t_+ - \varepsilon, t_+)$. Dann ist u nach dem Mittelwertsatz Lipschitz-stetig, also insbesondere gleichmäßig stetig auf $[t_+ - \varepsilon, t_+)$. Wir können also u stetig nach t_+ fortsetzen. Hieraus folgt

$$u'(t) = f(t, u(t)) \xrightarrow{t \to t_+} f(t_+, u(t_+)).$$

Somit ist u auch in t_+ differenzierbar mit $u'(t_+) = f(t_+, u(t_+))$. Nach dem lokalen Existenzsatz von Picard Lindelöf (Kapitel II, Theorem 1.8) gibt es ein $\delta > 0$ und ein w: $(t_+ - \delta, t_+ + \delta) \to \mathbb{R}^n$ mit w' = f(t, w) und $w(t_+) = u(t_+)$. Nach dem Eindeutigkeitssatz (Kapitel II, Satz 1.6) stimmt diese Lösung auf $(t_+ - \delta, t_+]$ mit u überein. Es folgt, dass

$$\tilde{u}(t) = \begin{cases} u(t) & \text{für } t \in (t_-, t_+) \\ w(t) & \text{für } t \in [t_+, t_+ + \delta) \end{cases}$$

eine Lösung der DGL ist, die u fortsetzt. Widerspruch zur Maximalität von u. Somit ist u'(t) unbeschränkt auf $[t_+ - \varepsilon, t_+)$. Nach der Voraussetzung an f ist u streng monoton wachsend, und somit folgt aus der Unbeschränkheit von u', dass $\lim_{t\to t_+} |u(t)| = +\infty$.

(b) " \Rightarrow " Sei u eine Lösung von y' = f(y), $y(t_0) = y_0$ auf $[t_0, \infty)$. Wegen u' = f(u) ist u streng monoton wachsend. Es gilt

$$\infty \xleftarrow{t \to \infty} \int_{t_0}^t 1 ds = \int_{t_0}^t \frac{u'(s)}{f(u(s))} ds = \int_{u_0}^{u(t)} \frac{1}{f(\tau)} d\tau \le \int_{u_0}^\infty \frac{1}{f(\tau)} d\tau.$$

" \Leftarrow " Da f Lipschitz-stetig ist, existiert genau eine maximale Lösung u von y'=f(y) mit $y(t_0)=y_0$ (Kapitel II, Satz 1.10). Ausserdem erfüllt f die Voraussetzungen von Teil (a). Somit gilt für das Existenzintervall (t_-,t_+) entweder $t_+=\infty$ oder $\lim_{t\to t_+}|u(t)|=\infty$. Angenommen $t_+\neq\infty$. Da u wie oben streng monoton wachsend ist, muss gelten $\lim_{t\to t_+}u(t)=\infty$. Es folgt

$$\int_{u_0}^{\infty} \frac{1}{f(s)} ds = \lim_{t \to t_+} \int_{u_0}^{u(t)} \frac{1}{f(s)} ds = \lim_{t \to t_+} \int_{t_0}^{t} \frac{u'(s)}{f(u(s))} ds = \lim_{t \to t_+} \int_{t_0}^{t} 1 ds = \infty.$$

Widerspruch. Somit gilt $t_+ = \infty$.