SS 09 23. Juni 2009

Lie Algebren

10. Übung

Aufgabe 57 Sei $A = (a_{ij})_{i,j=1}^n$ eine symmetrisierbare Matrix. Sei weiterhin A = DB, wobei $D = \text{diag}(\varepsilon_1, \ldots, \varepsilon_n)$ eine invertierbare Diagonalmatrix und B eine symmetrische Matrix ist. Zeigen Sie, daß für beliebige Indices i_1, i_2, \ldots, i_k

$$a_{i_1 i_2} a_{i_2 i_3} \dots a_{i_{k-1} i_k} \varepsilon_{i_k} = a_{i_k i_{k-1}} \dots a_{i_3 i_2} a_{i_2 i_1} \varepsilon_{i_1}$$

gilt.

Aufgabe 58 Sei $A = (a_{ij})_{i,j=1}^n$ eine komplexe $n \times n$ -Matrix. Zeigen Sie, daß A genau dann symmetrisierbar ist, wenn gilt

$$a_{ij} = 0$$
 impliziert $a_{ji} = 0$ und $a_{i_1i_2}a_{i_2i_3}\dots a_{i_ki_1} = a_{i_2i_1}a_{i_3i_2}\dots a_{i_1i_k}$ für alle i_1,i_2,\dots,i_k .

Aufgabe 59 Sei $A = (a_{ij})_{i,j=1}^n$ eine unzerlegbare symmetrisierbare verallgemeinerte Cartan Matrix. Beweisen Sie, daß A in der Form A = DB, wobei $D = \text{diag}(\varepsilon_1, \ldots, \varepsilon_n)$ eine invertierbare rationale Diagonalmatrix mit positiven ε_i und B eine symmetrische rationale Matrix ist, geschrieben werden kann. Zeigen Sie weiterhin, daß diese Zerlegung bis auf einen rationalen Faktor eindeutig ist.

Aufgabe 60 Sei A eine symmetrisierbare verallgemeinerte Cartan Matrix, G(A) die zugehörige Kac-Moody Algebra und (,) eine Standardform auf G(A). Seien $\{u_i\}$ und $\{u^i\}$ duale Basen von H bezüglich dieser Form. Weiterhin sei V ein beliebiger G(A)-Modul. Beweisen Sie, daß der Operator $\sum u^i u_i$ unabhängig von der Wahl der dualen Basen ist.

Aufgabe 61 Sei A eine symmetrisierbare verallgemeinerte Cartan Matrix, G(A) die zugehörige Kac-Moody Algebra und (,) eine Standardform auf G(A). Seien $\{u_i\}$ und $\{u^i\}$ duale Basen von H bezüglich dieser Form und sei V ein beliebiger G(A)-Modul. Zeigen Sie, daß für $x \in G_{\alpha}$

$$\left[\sum u^{i}u_{i}, x\right] = x\left((\alpha, \alpha) + 2\nu^{-1}(\alpha)\right)$$

gilt.