Prof. Dr. C. Herrmann Tobias Hansel René Hartmann Michael Klotz

SS 09 29.5.2009

Mathematik II für ET, WI(ET), Spolnf, IST, BEd.ET, CE

7. Übung mit Lösungshinweisen

Gruppenübungen

(G 22) (Basiswechsel)

Gegeben sei ein 2-dimensionaler reeller Vektorraum mit einer orthonormal Basis α . Bezüglich dieser Basis α ist eine Basis β : \vec{b}_1 , \vec{b}_2 durch $\vec{b}_1^{\alpha} = (1,0)^T$ und $\vec{b}_2^{\alpha} = (1,1)^T$ gegeben.

- (a) Zeichnen Sie die Vektoren \vec{b}_1 und \vec{b}_2 in ein Koordinatensystem bezüglich der Basis α ein. Zeichnen Sie in dieses Koordinatensystem auch den Vektor \vec{x} ein, der bezüglich der Basis β durch $\vec{x}^{\beta} = (2,3)^{\mathrm{T}}$ gegeben ist.
- (b) Bestimmen Sie die Transformationsmatrix ${}^{\alpha}T_{\beta}$, die Koordinaten bezüglich der Basis β in Koordinaten bezüglich der Basis α umrechnet. Was steht in ihren Spalten? Verwenden Sie ${}^{\alpha}T_{\beta}$, um \vec{x}^{α} zu bestimmen. Vergleichen Sie ihr Ergebnis mit der Zeichnung aus (a).
- (c) Bestimmen Sie nun die Transformationsmatrix ${}^{\beta}T_{\alpha}$, die Koordinaten bezüglich der Basis α in Koordinaten bezüglich der Basis β umrechnet. Überlegen Sie sich dazu, was der Zusammenhang zwischen ${}^{\alpha}T_{\beta}$ und ${}^{\beta}T_{\alpha}$ ist.
- (d) Nun sei eine lineare Abbildung $\varphi:\mathbb{R}^2\to\mathbb{R}^2$ durch die Darstellungsmatrix

$$A = \begin{pmatrix} 2 & 1 \\ 3 & 1 \end{pmatrix}$$

bezüglich der Basis α gegeben. Bestimmen Sie die Darstellungsmatrix B von φ bezüglich β . Begründen Sie ihre Rechnung.

LÖSUNG: (a) Skizze:

(b) In Spalte j von ${}^{\alpha}T_{\beta}$ steht \vec{b}_{j}^{α} , d.h.

$${}^{\alpha}T_{\beta} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}.$$

Also folgt $\vec{x}_{\alpha} = {}^{\alpha}T_{\beta}\vec{x}_{\beta} = (5,3)^{\mathrm{T}}.$

(c) Es gilt ${}^{\alpha}T_{\beta}{}^{\beta}T_{\alpha} = I$, d.h.

$${}^{\beta}T_{\alpha} = {}^{\alpha}T_{\beta}^{-1} = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}.$$

(d) Für die Darstellungsmatrix B von φ bezüglich der Basis β gilt

$$B = {}^{\beta}T_{\alpha}A^{\alpha}T_{\beta} = \begin{pmatrix} -1 & -1 \\ 3 & 4 \end{pmatrix}.$$

Anschaulich gesprochen, rechnet man zunächst Koordinaten bezüglich β in Koordinaten bezüglich α um. Anschließend wendet man die Matrix A an und rechnet dann wieder in Koordinaten bezüglich β zurück.

(G 23) (Transformation von Integralen I)

Durch die Menge $K = \{(x,y,z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 \leq 1, z \geq \frac{1}{2}\}$ wird eine Kugelkappe der Einheitskugel beschrieben. Veranschaulichen Sie diese Menge mit Hilfe einer Skizze und bestimmen Sie das Volumen von K. Verwenden Sie dazu eine geeignete Substitution (σ,τ) (schreiben Sie diese explizit hin!). Geben Sie außerdem eine Menge B an, so dass $\sigma(B) = K$ gilt.

LÖSUNG: Skizze: klar. Wir verwende Zylinderkoordianten, d.h.

$$\sigma: [0, \infty[\times [0, 2\pi[\times \mathbb{R} \to \mathbb{R}^3, \quad \sigma(r, \varphi, z) = (r\cos(\varphi), r\sin(\varphi), z),$$

und

$$\tau(r\cos\varphi, r\sin\varphi, z) = r$$

Für

$$B:=\{(r,\varphi,z):\ 0\le r\le \sqrt{1-z^2},\ 0\le \varphi\le 2\pi,\ \frac{1}{2}\le z\le 1\}$$

gilt $\sigma(B) = K$. Somit ergibt sich für das Volumen von K

$$\begin{split} \int_K 1 \, \mathrm{d}(x,y,z) &= \int_B r \, \mathrm{d}(r,\varphi,z) = \int_0^{2\pi} \int_{1/2}^1 \int_0^{\sqrt{1-z^2}} r \, \mathrm{d}r \, \mathrm{d}z \, \mathrm{d}\varphi \\ &= \int_0^{2\pi} \int_{1/2}^1 \left[\frac{1}{2} r^2 \right]_{r=0}^{r=\sqrt{1-z^2}} \, \mathrm{d}z \, \mathrm{d}\varphi = \int_0^{2\pi} \int_{1/2}^1 \frac{1}{2} (1-z^2) \, \mathrm{d}z \, \mathrm{d}\varphi \\ &= \int_0^{2\pi} \left[\frac{1}{2} z - \frac{1}{6} z^3 \right]_{z=1/2}^{z=1} \, \mathrm{d}\varphi = \int_0^{2\pi} \frac{5}{48} \, \mathrm{d}\varphi = \frac{5}{24} \pi. \end{split}$$

(G 24) (Transformation von Integralen II)

Sei $K = \{(x,y,z) \in \mathbb{R}^3 \mid 1 \leq x^2 + y^2 + z^2 \leq 3\}$ und beschreibe

$$f: K \to \mathbb{R}: (x, y, z) \mapsto \frac{1}{1 + x^2 + y^2 + z^2}$$

die Ladungsdichte im Körper K. Berechnen Sie die Gesamtladung von K, indem Sie eine geeignete Substitution verwenden.

LÖSUNG: Wir verwenden Kugelkoordinaten, d.h.

$$\sigma: [0, \infty[\times[0, 2\pi] \times [0, \pi] \to \mathbb{R}^3, \qquad \sigma(r, \varphi, \theta) = (r\cos\varphi\sin\theta, r\sin\varphi\sin\theta, r\cos\theta).$$

Es gilt $r^2=x^2+y^2+z^2$. Daher ist K eine Hohlkugel mit innerem Radius 1 und äußerem Radius $\sqrt{3}$. Für

$$B = \{(r, \varphi, \theta) : 1 \le r \le 3, \ 0 \le \varphi \le 2\pi, \ 0 \le \theta \le \pi\}.$$

gilt $\sigma(B) = K$. Somit ergibt sich für die Gesamtladung

$$\int_{K} f(x, y, z) d(x, y, z) = \int_{1}^{\sqrt{3}} \int_{0}^{\pi} \int_{0}^{2\pi} \frac{1}{1 + r^{2}} r^{2} \sin \theta \, d\varphi d\theta dr
= \int_{1}^{\sqrt{3}} \int_{0}^{\pi} \frac{2\pi}{1 + r^{2}} r^{2} \sin \theta \, d\theta dr
= 2\pi \int_{1}^{\sqrt{3}} \left[-\frac{r^{2}}{1 + r^{2}} \cos \theta \right]_{-\frac{\pi}{2}}^{\frac{\pi}{2}} dr
= 4\pi \int_{1}^{\sqrt{3}} 1 - \frac{1}{1 + r^{2}} dr = 4\pi \left[r - \arctan r \right]_{1}^{\sqrt{3}}
= 4\pi \left(\sqrt{3} - \frac{\pi}{3} - 1 + \frac{\pi}{4} \right) = 4\pi \left(\sqrt{3} - 1 - \frac{\pi}{12} \right).$$

(G 25) (Transformation von Integralen III)

Berechnen Sie unter Verwendung einer geeigneten Substitution das Integral

$$\int_G (x^2 + y^2) \mathrm{d}(x, y),$$

mit dem Integrationsbereich $G=\{(x,y)\in\mathbb{R}^2:0\leq y\leq \sqrt{x-x^2},0\leq x\leq 1\}.$ Machen Sie sich zunächst eine Skizze von G.

Hinweis: Verwenden Sie $\cos^4(\varphi) = \frac{1}{8} (\cos 4\varphi + 4\cos 2\varphi + 3)$.

LÖSUNG: Wir verwenden Polarkoordinaten, d.h.

$$\sigma: [0, \infty[\times [0, 2\pi], \qquad \sigma(r, \varphi) = (r\cos\varphi, r\sin\varphi).$$

Als erstes bestimmen wir nun ein B, so dass $\sigma(B)=G$ gilt: Wir nehmen $(x,y)\in\partial G$. Dann gilt $y=\sqrt{x-x^2}$. Somit erhalten wir $r^2=x^2+y^2=x^2+x-x^2=x$, d.h. $r=\sqrt{x}$. Außerdem gilt $\cos\varphi=\frac{x}{r}=\sqrt{x}=r$. Das bedeutet der Radius r läuft im Intervall $[0,\cos\varphi]$. Der Winkel φ läuft im Intervall $[0,\frac{\pi}{2}]$, da G im 1. Quadranten liegt. Somit gilt

$$B = \{(r, \varphi): \ 0 \le r \le \cos \varphi, \ 0 \le \varphi \le \frac{\pi}{2}\}.$$

Für das Integral ergibt sich nun

$$\int_{G} (x^{2} + y^{2}) d(x, y) = \int_{0}^{\frac{\pi}{2}} \int_{0}^{\cos \varphi} r^{3} dr d\varphi = \frac{1}{4} \int_{0}^{\frac{\pi}{2}} \cos^{4} \varphi d\varphi$$

$$= \frac{1}{4} \cdot \frac{1}{8} \int_{0}^{\frac{\pi}{2}} (\cos 4\varphi + 4\cos 2\varphi + 3) d\varphi = \frac{1}{32} \left(\frac{1}{4} \sin 4\varphi + 2\sin 2\varphi + 3\varphi \right) \Big|_{0}^{\frac{\pi}{2}}$$

$$= \frac{1}{32} \left(\frac{1}{4} + 2 + 3\frac{\pi}{2} \right).$$

Hausübungen

(H 22) (Transformation von Integralen; 4+4 Punkte)

Berechnen Sie jeweils unter Verwendung einer geeigneten Substitution die folgenden Integrale und machen Sie jeweils eine Skizze des Integrationsbereiches.

(a)
$$\int_G (x^2 + y^2) d(x, y)$$

mit Integrationsbereich $G = \{(x, y) \in \mathbb{R}^2 : |x| \ge 1 \text{ oder } |y| \ge 1, x^2 + y^2 \le 2\}.$

$$\int_{Z} \frac{z}{1+x^2+y^2} \mathrm{d}(x,y,z)$$

mit Integrationsbereich $Z = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 \le 1, \ 0 \le z \le 1\}.$

LÖSUNG: (a) Die Menge G ist ein Kreis G_1 mit Radius $\sqrt{2}$ aus dem das offene Quadrat $G_2 = [-1,1]^2$ entfernt wurde. Also gilt

$$\int_{G} (x^2 + y^2) d(x, y) = \int_{G_1} (x^2 + y^2) d(x, y) - \int_{G_2} (x^2 + y^2) d(x, y).$$

Für das zweite Integral erhält man

$$\int_{G_2} (x^2 + y^2) d(x, y) = \int_{-1}^1 \int_{-1}^1 x^2 + y^2 dx dy = 2 \int_{-1}^1 \int_{-1}^1 y^2 dx dy = 4 \int_{-1}^1 y^2 dy$$
$$= 4 \left[\frac{1}{3} y^3 \right]_{y=-1}^{y=1} = \frac{8}{3}.$$

Für das erste Integral benutzen wir Polarkoordinaten, d.h. die Transformation

$$\sigma: [0, \infty[\times [0, 2\pi[\to \mathbb{R}^2, \sigma(r, \varphi) = (r\cos(\varphi), r\sin(\varphi)).$$

Somit ergibt sich

$$\int_{G_1} (x^2 + y^2) \, \mathrm{d}(x, y) = \int_0^{\sqrt{2}} \int_0^{2\pi} r^3 \, \mathrm{d}\varphi \, \mathrm{d}r = \left[\frac{1}{2} \pi r^4 \right]_{r=0}^{r=\sqrt{2}} = 2\pi.$$

Also erhält man

$$\int_{G} (x^2 + y^2) d(x, y) = 2\pi - \frac{8}{3}.$$

(b) Der Bereich Z ist ein Zylinder, deshalb lohnt es sich Zylinderkoordinaten zu benutzen, d.h.

$$\sigma: [0, \infty[\times[0, 2\pi[\times\mathbb{R} \to \mathbb{R}^3, \quad \sigma(r, \varphi, z) = (r\cos(\varphi), r\sin(\varphi), z).$$

Für

$$B = \{(r, \varphi, z) : r \in [0, 1], \varphi \in [0, 2\pi], z \in [0, 1]\}$$

gilt $\sigma(B) = Z$. Das Integral ist dann gleich:

$$\begin{split} \int\limits_{Z} 1 \; \mathrm{d}(x,y,z) &= \int\limits_{0}^{1} \int\limits_{0}^{1} \int\limits_{0}^{2\pi} \frac{z}{1+r^{2}} \cdot r \mathrm{d}\varphi \mathrm{d}z \mathrm{d}r = 2\pi \int\limits_{0}^{1} \int\limits_{0}^{1} \frac{rz}{1+r^{2}} \mathrm{d}z \mathrm{d}r = 2\pi \int\limits_{0}^{1} \frac{r}{1+r^{2}} \left[\frac{z^{2}}{2}\right]_{0}^{1} \mathrm{d}r \\ &= 2\pi \int\limits_{0}^{1} \frac{r}{1+r^{2}} \cdot \frac{1}{2} \mathrm{d}r = \pi \int\limits_{0}^{1} \frac{r}{1+r^{2}} \mathrm{d}r = \pi \left[\frac{1}{2} \log(1+r^{2})\right]_{0}^{1} = \frac{\pi}{2} \log 2 \; . \end{split}$$

(H 23) (Volumen eines Kugelschalensektors; 5+4 Punkte)

(a) Gegeben sei der Kreisringsektor

$$K = \{(x, z) \in \mathbb{R}^2 : x \ge 0, \ z \ge 0, \ 9 \le x^2 + z^2 \le 81\}.$$

Machen Sie eine Skizze von K und geben Sie eine Menge B an, so dass $\sigma(B)=K$ gilt, wobei

$$\sigma: [0, \infty[\times[0, 2\pi] \to \mathbb{R}^2, \qquad \sigma(r, \vartheta) = (r\cos\vartheta, r\sin\vartheta).$$

die Polarkoordinaten beschreibt. Berechnen Sie den Flächeninhalt von K sowie den Schwerpunkt (x_s, z_s) der Fläche K. Geben Sie den Schwerpunkt außerdem in Polarkoordinaten (r_k, ϑ_k) an. Liegt (x_s, z_s) in K?

(b) Berechnen Sie das Volumen des Kugelschalensektors

$$D = \{ (r\cos\varphi\sin\vartheta, r\sin\varphi\sin\vartheta, r\cos\vartheta) : 3 \le r \le 9, 0 \le \varphi \le \frac{\pi}{2}, 0 \le \vartheta \le \frac{\pi}{2} \}.$$

Verwenden Sie dabei die Resultate aus Teil (a).

LÖSUNG: (a) Für $B=\{(r,\varphi): 3\leq r\leq 9,\ 0\leq \varphi\leq \frac{\pi}{2}\}$ gilt $\sigma(B)=K$. Als Flächeninhalt erhalten wir

$$\mu(K) = \int_K 1 \, \mathrm{d}(x, z) = \int_0^{\frac{\pi}{2}} \int_3^9 1 \, \mathrm{d}r \mathrm{d}\varphi = 72 \cdot \frac{\pi}{4}.$$

Als Schwerpunkt erhalten wir

$$x_s = \frac{1}{\mu(K)} \int_k x \, d(x, z) = \frac{1}{\mu(K)} \int_0^{\frac{\pi}{2}} \int_3^9 r^2 \cos \varphi \, dr d\varphi = 234 \cdot \frac{4}{72\pi}$$

und

$$z_s = \frac{1}{\mu(K)} \int_k z \, d(x, z) = \frac{1}{\mu(K)} \int_0^{\frac{\pi}{2}} \int_3^9 r^2 \sin \varphi \, dr d\varphi = 234 \cdot \frac{4}{72\pi}.$$

Somit liegt (x_s, z_s) in K. Als Polarkkordinaten für den Schwerpunkt erhalten wir

$$r_k = \sqrt{x_s^2 + z_s^2} = \sqrt{2}x_s,$$

$$\cos \vartheta_K = \frac{x_s}{r_k} = \frac{1}{\sqrt{2}}, \quad \text{d.h.} \quad \vartheta_k = \arccos \frac{1}{\sqrt{2}} = \frac{\pi}{4}.$$

(b) Wie im Skript auf Seite 86 betrachten wir die menge

$$B = \{ (r \sin \vartheta, r \cos \vartheta) : 3 \le r \le 9, \ 0 \le \vartheta \le \frac{\pi}{2} \}.$$

Wir beachten, dass die Menge B gleich der Menge K aus Teil (a) ist (die sieht man z.B., wenn man eine Skizze von B macht). Mit der Formel aus dem Skript (Seite 86) und den Ergebnissen aus (a) erhalten wir

$$\mu(D) = \Delta \varphi \cdot r_k \cdot \sin \vartheta_k \cdot \mu(K) = \frac{\pi}{2} \cdot \sqrt{272} \frac{4}{72\pi} \cdot \frac{1}{\sqrt{2}} \cdot 72 \frac{\pi}{4} = \frac{\pi}{2} \cdot 234.$$

(H 24) (Determinante; 2 Punkte)

Berechnen Sie die Determinante der Matrix

$$A = \left(\begin{array}{rrr} 1 & -2 & 1\\ 2 & 0 & 2\\ -1 & 1 & -3 \end{array}\right)$$

indem Sie nach einer geeigneten Spalte oder Zeile entwickeln.

LÖSUNG: Die Determinante von A lässt sich z.B. durch Entwickeln nach der dritten Spalte berechnen:

$$\det A = 1(0-2) - (-2)(2(-3) - 2(-1)) + 1(2-0) = -2 - 8 + 2 = -8.$$