Prof. Dr. C. Herrmann René Hartmann Michael Klotz Tobias Hansel

SS 2009 15.5.2009

Mathematik II für ET, WI(ET), SpoInf, iSt, BEd.ET, CE

5. Übung mit Lösungshinweisen

Gruppenübungen

(G 13) Maßtheorie am Dreieck

Sie haben das durch die Eckpunkte (0,0),(2,0),(2,1) gegebene Dreieck \angle vorliegen. Entwerfen Sie eine Zerlegung Z_n von \angle aus Rechtecken, deren Weite für $n \to \infty$ verschwindet (Nachweis!). Benutzen Sie anschließend Z_n , um den Flächeninhalt des Dreiecks zu bestimmen! Hinweis: Es gilt $\sum_{k=1}^{n} k = n(n+1)/2$.

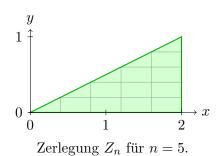
LÖSUNG: Die Zerlegung kann - muss aber nicht - aus Quadraten bestehen (siehe Kapitel 20.1.2 im Skript). Wir wählen hier z.B. als Teilintervalle $T_{ij}^{(n)}$ der Zerlegung

$$\left[\frac{2(i-1)}{n}, \frac{2i}{n}\right] \times \left[\frac{j-1}{n}, \frac{j}{n}\right], \quad (i,j) \in \{1, \dots, n\}^2.$$

Der Flächeninhalt der $T_{ij}^{(n)}$ ist gerade $2/n^2$. Wie an der Skizze ersichtlich ist, gilt $T_{ij}^{(n)} \subseteq \mathcal{L}$ gerade dann, wenn i > j ist. Bei festem n sind dies $(1 + 2 + \dots (n-1)) = n(n-1)/2$ der $T_{ij}^{(n)}$, also gilt

$$Vol(Z_n) = \frac{n^2 - n}{n^2} = 1 - \frac{1}{n}$$

und $\operatorname{Vol}(\angle I) = \lim_{n \to \infty} \operatorname{Vol}(Z_n) = 1.$



(G 14) Integration auf dem Einheitskreis

Sie möchten das Integral der Funktion $f(x,y)=x^2+y^2$ über dem Einheitskreis $\bigcirc:=\{(x,y)\in\mathbb{R}^2:x^2+y^2\leq 1\}$ bestimmen.

a) Geben Sie eine Zerlegung Z_n des Einheitskreises an, welche aus n^2 zueinander ähnlichen Kreisringstücken besteht. Dabei sollen jeweils der Radius $r \in [0,1]$ und die Winkel in immer kleiner werdende Stücke unterteilt sein. Verdeutlichen Sie sich Ihre Konstruktion anhand einer Skizze.

- b) Bestimmen Sie mit Schulwissen oder Formelsammlung den Flächeninhalt der Kreisringstücke aus Z_n , sowie passende Stufenfunktionen $\underline{f}_n, \overline{f}^n$.
- c) Bestimmen Sie $\int_{\mathbb{O}} f(x,y)d(x,y)$ mithilfe Ihrer Zerlegung. *Hinweis:* Es gilt $\sum_{k=1}^n k^2 = \frac{1}{6}n(n+1)(2n+1)$ und $\sum_{k=1}^n k^3 = \frac{1}{4}n^2(n+1)^2$. *Tip:* Sie benötigen nur den führenden Koeffizienten, den von n^3 .

LÖSUNG: a) Wir wählen die Kreisringstücke $T_{ij}^{(n)}$ mit Polarkoordinaten

$$\begin{split} T_{ij}^{(n)} &= r_i^n \times \alpha_j^n, \ (i,j) \in \{1,\dots,n\}^2, \\ r_i^n &= [\frac{i}{n+1},\frac{i+1}{n+1}], i \in \{1,\dots,n\}, \quad \text{Intervall der Radien} \\ \alpha_j &= [\frac{2\pi(j-1)}{n},\frac{2\pi j}{n}], j \in \{1,\dots,n\}, \quad \text{Intervall der Winkel.} \end{split}$$

Das innerste Stück von \mathbb{Z}_n ist gerade der Kreis von Radius 1/(n+1).

b) Ein Kreis von Radius r hat Flächeninhalt πr^2 , somit

$$\mu(T_{ij}^{(n)}) = ((\frac{i+1}{n+1})^2 - (\frac{i}{n+1})^2)\frac{\pi}{n} = \frac{1+2i}{n(n+1)^2}\pi.$$

Das Volumen des innersten Stücks, des Kreises von Radius 1/(n+1), ist $\pi(n+1)^{-2}$ und verschwindet für $n \to \infty$. Da der Integrand an 0 stetig ist können wir sie in c) bei der Summation weglassen.

Wenn g die Funktion f für Polarkoordinaten ist, so gilt $g(r,\alpha)=r^2$. Als Stufenfunktionen kann man z.B.

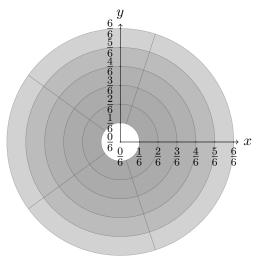
$$\underline{g}_n(r) = (\frac{i}{n+1})^2, \quad \text{falls } r \in r_i^n,$$

$$\overline{g}_n(r) = (\frac{i+1}{n+1})^2, \quad \text{falls } r \in r_i^n,$$

wählen.

c) Es ist

$$\begin{split} \frac{1}{\pi} \sum_{i,j=1}^{n} (\underline{g}_n)_{r_i} \mu(T_{ij}^{(n)}) &= \sum_{i=1}^{n} \frac{i^2}{(n+1)^2} n \frac{1+2i}{n(n+1)^2} \\ &= (n+1)^{-4} \left(2 \sum_{i=1}^{n} i^3 + \sum_{i=1}^{n} i^2 \right) \\ &= \frac{n \left(3n^2 + 5n + 1 \right)}{6(n+1)^3} = -\frac{2}{3(n+1)} + \frac{1}{6(n+1)^3} + \frac{1}{2} \\ &\to \frac{1}{2} \text{ für } n \to \infty. \end{split}$$



Zerlegung Z_n des Einheitskreisesfür n=5. Der weiße Kreis mit Radius 1/6=1/(n+1) ist in Z_n , kann aber beim Summieren vernachläßigt werden.

(G 15) Normalbereiche

Gegeben seien das in der Abbildung gezeigte Dreieck \triangleright als Integrationsgebiet, sowie der Integrand $f(x,y) = x - y, (x,y) \in \mathbb{R}^2$.

- a) Bestimmen Sie eine Zerlegung von \triangleright in Normalbereiche.
- b) Ermitteln Sie mithilfe dieser Normalbereiche das Integral $\int \int f(x,y)d(x,y)$.

LÖSUNG: a) Zum Beispiel ist

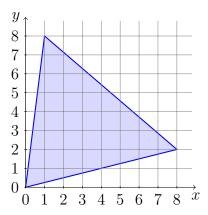
$$\underline{g}(x) := \frac{1}{4}x$$

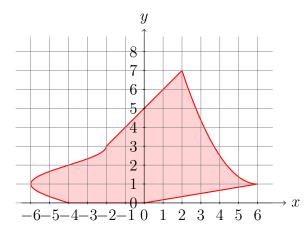
$$\overline{g}(x) := \begin{cases} 8x & \text{falls } x \in [0, 1], \\ -\frac{6}{7}x + 8 + \frac{6}{7} & \text{falls } x \in [1, 8] \end{cases}$$

eine Zerlegung von bin Normalbereiche.

b) Hier ist

$$\int \int f(x,y)d(x,y) = \int_0^1 \int_{\frac{1}{4}x}^{8x} f(x,y)dydx + \int_1^8 \int_{\frac{1}{4}x}^{-\frac{6}{7}x+8+\frac{6}{7}} f(x,y)dydx$$
$$= -\frac{775}{96} - \frac{217}{96} = -\frac{31}{3}.$$





Links: Das Dreieck ▶ aus **G15**. *Rechts:* Die Menge △ aus **H16**.

(G 16) Matrizen als lineare Abbildungen, Teil 1

Sei

$$f: \mathbb{R}^3 \to \mathbb{R}^3: (x, y, z)^T \mapsto (9z - x, 2y + 3x, x + y + z)^T$$

und

$$g: \mathbb{R}^3 \to \mathbb{R}^2: (x, y, z)^T \mapsto (3z - 2y - x, 5y)^T.$$

Schreiben Sie f, g und $g \circ f$ in Matrizenform, z.B. bei der ersten Funktion $f(\mathbf{x}) = A\mathbf{x}$ mit geeigneter Matrix A.

LÖSUNG: Es sind

$$M_f = \begin{pmatrix} -1 & 0 & 9 \\ 3 & 2 & 0 \\ 1 & 1 & 1 \end{pmatrix}, \quad g = \begin{pmatrix} -1 & -2 & 3 \\ 0 & 5 & 0 \end{pmatrix}$$

und es gilt für $g \circ f$

$$M_{g \circ f} = M_g M_f = \begin{pmatrix} -2 & -1 & -6 \\ 15 & 10 & 0 \end{pmatrix}.$$

Hausübungen

(H 14) Archimedes und die Fläche unter der Parabel (4 Punkte)

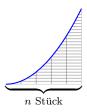
Bestimmen Sie wie Archimedes die Fläche unter dem Parabelbogen $y=x^2, x\in [0,1]$ durch Ausschöpfen mit Hilfe einer passenden Zerlegung. Die Formeln aus **G14** können möglicherweise nützlich sein.

LÖSUNG: Wir wählen zum Beispiel Rechtecke für unsere Zerlegung:

$$T_{ij}^{(n)} = \left[\frac{i-1}{n}, \frac{i}{n}\right] \times \left[\frac{j-1}{n^2}, \frac{j}{n^2}\right], \quad i \in \{1, \dots, n\}, j \in \{1, \dots, n^2\}.$$

Es ist $\mu(T_{ij}^{(n)}) = 1/n^3$. Somit erhält man

$$Vol(Z_n) = n^{-3} \sum_{i=1}^n \sum_{j=1}^{i^2} \mu(T_{ij}^{(n)})$$
$$= n^{-3} \sum_{i=1}^n i^2 = \frac{1}{6} n^{-2} (n+1)(2n+1)$$
$$\to \frac{1}{3} \text{ für } n \to \infty.$$

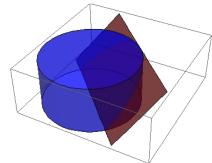


(H 15) Geschnittener Zylinder (2+3+0 Punkte)

Sie haben die Ebene $E: z=\frac{x+y}{\sqrt{2}}$ und den Zylinder $Z:=\{(x,y,z)\in\mathbb{R}^3:\ x^2+y^2\leq 1,z\in[0,1]\}$ vorliegen.

- a) Bestimmen Sie $\int_{\Omega} x + y d(x, y)$, wobei Ω wie in **G14** der Einheitskreis ist.
- b) Bestimmen Sie das Volumen \tilde{V} desjenigen Zylinderteils, der auf der gleichen Seite der Ebene wie (1,0,0) liegt, mithilfe Ihrer Zerlegung aus **G14**.

c) Freiwillige Zusatzaufgabe (ohne Punkte). Sie haben eine stetige Funktion $h(x):[0,1] \to (0,\infty)$ gegeben. Bestimmen Sie das Volumen des Rotationskörpers, der entsteht, wenn y=h(x) um die x-Achse rotiert wird.



LÖSUNG:

- a) Aus Symmetriegründen muss 0 für dieses Integral herauskommen.
- b) Beachten Sie, dass die Ebene E im ursprünglichen Aufgabentext falsch angegeben war. Diese Fassung enthält die korrekte Angabe. Mit $\sum_{j=3n}^{7n}\cos\frac{2\pi j}{8n}=\sum_{j=3n}^{7n}\sin\frac{2\pi j}{8n}=-\frac{\cot\left(\frac{\pi}{8n}\right)}{\sqrt{2}}$ erhält man leicht

$$\tilde{V} = \sum_{i=1}^{8n} \sum_{j=3n}^{7n} -\frac{i}{n} (\cos \frac{2\pi j}{8n} + \sin \frac{2\pi j}{8n}) \mu(T_{ij}^{(8n)})$$

$$= \frac{\pi (32n+5) \cot (\frac{\pi}{8n})}{24\sqrt{2}n(8n+1)}$$

$$\to \frac{2\sqrt{2}}{3} \text{ für } n \to \infty.$$

(H 16) Normalbereiche, Teil 2 (2+3 Punkte)

Gegeben seien das in der Abbildung gezeigte \triangle als Integrationsgebiet, sowie der Integrand $f(x,y) = x - y, (x,y) \in \mathbb{R}^2$ aus Aufgabe **G15**.

- a) Bestimmen Sie eine Zerlegung von \triangle in Normalbereiche. *Hinweis:* Die beiden nichtlinearen Randkurven von \triangle erfüllen $-x = 4 + 2\sin(\frac{\pi}{2}y)$ bzw. $y = 1 + \frac{3}{8}(x 6)^2$.
- b) Ermitteln Sie mit diesen Normalbereichen das Integral $\int \int fd(x,y)$. Hinweis: $\int \sin^2(t)dt = \frac{t}{2} \frac{1}{4}\sin(2t)$.

LÖSUNG: a) Zum Beispiel bilden

$$\begin{split} \underline{g}_1(y) &= -(4+2\sin(\frac{\pi}{2}y)), \quad \overline{g}_1(y) = 8y, \quad y \in [0,1] \\ \underline{g}_2(y) &= \underline{g}_1(y), \quad \overline{g}_2(y) = 6 + \sqrt{\frac{8}{3}(y-1)}, \quad y \in [1,3] \\ \underline{g}_3(y) &= y-5, \quad \overline{g}_3(y) = \overline{g}_2(y), \quad y \in [3,7] \end{split}$$

einen Normalbereich bezüglich der y-Achse.

b) Mit $y_1 = 0, y_2 = 1, y_3 = 3, y_4 = 7$ erhält man

$$\begin{split} &\int_{0}^{1} \int_{\underline{g}_{1}(y)}^{\overline{g}_{1}(y)} f(x,y) dx dy = -\frac{8 + 16\pi + 3\pi^{2}}{\pi^{2}} \approx -8.90353 \\ &\int_{1}^{3} \int_{\underline{g}_{2}(y)}^{\overline{g}_{2}(y)} f(x,y) dx dy = -\frac{58}{3} + \frac{304}{15\sqrt{3}} + \frac{16}{\pi^{2}} \approx -6.01123 \\ &\int_{3}^{7} \int_{\underline{g}_{3}(y)}^{\overline{g}_{3}(y)} f(x,y) dx dy = -\frac{8}{45} \left(9 + 38\sqrt{3}\right) \approx -13.301 \\ &\int \int f d(x,y) = \sum_{i=1}^{3} \int_{y_{j}}^{y_{j+1}} \int_{g_{i}(y)}^{\overline{g}_{j}(y)} f(x,y) dx dy \\ &= -\frac{359}{15} + \frac{8}{\pi^{2}} - \frac{16}{\pi}, \end{split}$$

also etwa -28.2157.

(H 17) Matrizen als lineare Abbildungen, Teil 2 (4 Punkte)

Wir betrachten die linearen Abbildungen $\Phi: \mathbb{R}^2 \to \mathbb{R}^3$ und $\Psi: \mathbb{R}^3 \to \mathbb{R}$ mit

$$\Phi(x_1, x_2) = (x_2, x_1, 3x_1 - x_2)^T, \qquad \Psi(y_1, y_2, y_3) = y_2 + y_3 - y_1.$$

Bestimmen Sie die zu Φ , Ψ und $\Psi \circ \Phi$ gehörigen Matrizen und schreiben Sie die Abbildungen in Matrizenform $f(\mathbf{x}) = A\mathbf{x}$.

LÖSUNG: Merkregel: In den Spalten der Abbildungsmatrix stehen die Koordinaten der Bilder der Basisvektoren.

Hier also:

<u>Für Φ </u> Wir müssen $\Phi(e_1) = \Phi(1,0)$ und $\Phi(e_2) = \Phi(0,1)$ bestimmen:

$$\Phi(1,0) = (0,1,3 \cdot 1 - 0)^T = (0,1,3)^T$$

$$\overline{\Phi(1,0)} = (0,1,3 \cdot 1 - 0)^T = (0,1,3)^T
\Phi(0,1) = (1,0,3 \cdot 0 - 1)^T = (1,0,-1)^T,$$

 $A_{\Phi} = \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \\ 3 & 1 \end{array}\right)$ also ist die Abbildungsmatrix von Φ :

Genau so:

$$\Psi(1,0,0) = -1, \qquad \Psi(0,1,0) = \Psi(0,0,1) = 1,$$

also

$$A_{\Psi} = (-1 \ 1 \ 1)$$

Nach Kapitel 10 (9) gilt nun

$$A_{\Psi \circ \Phi} = A_{\Psi} \cdot A_{\Phi} = (-1 \ 1 \ 1) \begin{pmatrix} 0 & 1 \\ 1 & 0 \\ 3 & -1 \end{pmatrix} = (4 \ -2)$$