Fachbereich Mathematik

Prof. Dr. C. Herrmann Tobias Hansel René Hartmann Michael Klotz

SS 09 26.6.2009

Mathematik II für ET, WI(ET), Spolnf, IST, BEd.ET, CE

11. Übung mit Lösungshinweisen

Gruppenübungen

(G 37) (Eigenwerte & Eigenvektoren geometrisch)

Sei $a \in \mathbb{R}^3 \setminus \{0\}$ und $\alpha \in [0, 2\pi)$. Bezeichne φ die lineare Abbildung, die eine Drehung um den Vektor a mit dem Winkel α darstellt. Sei $E_a = \{x \in \mathbb{R}^3 \mid a^T x = 0\}$ die durch den Normalenvektor a definierte Ebene und ψ die lineare Abbildung, die eine Spiegelung an jener beschreibt.

Geben Sie die reellen Eigenwerte und die dazugehörigen Eigenvektoren von φ und ψ an. Verzichten Sie dabei auf eine explizite Berechnung der darstellenden Matrizen, sondern schließen Sie dies aus geometrischen Überlegungen.

LÖSUNG: In Abhängigkeit von α werden drei Fälle unterschieden:

- 1. Fall $(\alpha = 0)$: In diesem Fall ist φ die Identität. Daher gilt für alle $x \in \mathbb{R}^3$ $\varphi(x) = x$. Das heißt 1 ist der einzige Eigenwert von φ und $\mathbb{R}^3 \setminus \{0\}$ ist die Menge der dazugehörigen Eigenvektoren.
- 2. Fall $(\alpha = \pi)$: Vektoren, die parallel zu a sind, bleiben durch die Drehung unverändert. Daher ist $\{\mu a \mid \mu \in \mathbb{R} \setminus \{0\}\}$ die Menge der Eigenvektoren zum Eigenwert 1.

Jeder zu a orthogonale Vektor wird auf den Vektor, der genau in die entgegengesetzte Richtung zeigt, abgebildet. Seien x und y zwei linear unabhängige und zu a orthogonale Vektoren. Dann ist $\{\mu x + \nu y \mid \mu, \nu \in \mathbb{R}\} \setminus \{0\}$ die Menge der Eigenvektoren zum Eigenwert -1.

3. Fall $(\alpha \in (0, 2\pi) \setminus \{\pi\})$: Vektoren, die parallel zu a sind, bleiben durch die Drehung unverändert. Daher ist die Menge $\{\mu a \mid \mu \in \mathbb{R} \setminus \{0\}\}$ die Menge der Eigenvektoren zum Eigenwert 1.

Alle übrigen Vektoren werden nicht auf ein Vielfaches ihrer selbst abgebildet. Daher besitzt φ keine weiteren Eigenwerte und Eigenvektoren.

Für ψ gilt, daß alle Vektoren, die in der Ebene E_a liegen, durch die Spiegelung nicht verändert werden. Daher ist $E_a \setminus \{0\}$ die Menge der Eigenvektoren zum Eigenwert 1.

Jeder Vektor der parallel zu a ist (und damit senkrecht auf der Ebene E_a steht), wird auf den Vektor, der in die entgegengesetzte Richtung zeigt, abgebildet. Daher ist $\{\mu a \mid \mu \in \mathbb{R} \setminus \{0\}\}$ die Menge der Eigenvektoren zum Eigenwert -1

(G 38) (Eigenwerte & Eigenvektoren)

Gegeben sei

$$A = \left(\begin{array}{rrr} -1 & -3 & -3 \\ -2 & -1 & -2 \\ 2 & 3 & 4 \end{array}\right).$$

(a) Bestimmen Sie das charakteristische Polynom von A.

- (b) Bestimmen Sie alle Eigenwerte und Eigenvektoren.
- (c) Geben Sie eine Diagonalmatrix D und eine Matrix S an, so dass $S^{-1}AS = D$ gilt.

Lösung: (a)

$$\det(A - \lambda E) = \det\begin{pmatrix} -1 - \lambda & -3 & -3 \\ -2 & -1 - \lambda & -2 \\ 2 & 3 & 4 - \lambda \end{pmatrix} = \det\begin{pmatrix} -1 - \lambda & -3 & -3 \\ -2 & -1 - \lambda & -2 \\ 0 & 2 - \lambda & 2 - \lambda \end{pmatrix}$$
$$= (-1 - \lambda) \cdot ((-1 - \lambda)(2 - \lambda) + 2(2 - \lambda)) + 2 \cdot (-3(2 - \lambda) + 3(2 - \lambda))$$
$$= -(2 - \lambda)(1 + \lambda)(1 - \lambda).$$

Also ist $P_A(\lambda) = (1 + \lambda)(1 - \lambda)(2 - \lambda)$.

(b) Die Eigenwerte von A sind die Nullstellen des charakteristischen Polynoms, also $\lambda_1 = -1$, $\lambda_2 = 1$, $\lambda_3 = 2$.

Die zu λ_i gehörenden Eigenvektoren ergeben sich als Lösung der Gleichungssysteme $(A - \lambda_i E)v_i = 0$, i = 1, 2, 3. Zu beachten ist noch, dass der Nullvektor per Definition nie ein Eigenvektor ist.

 $\lambda_1 = -1$: In diesem Fall ist $(A + E)v_1 = 0$ zu lösen.

$$\left(\begin{array}{ccc|c} 0 & -3 & -3 & 0 \\ -2 & 0 & -2 & 0 \\ 2 & 3 & 5 & 0 \end{array}\right) \rightsquigarrow \left(\begin{array}{ccc|c} 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right)$$

Also ist

$$v_1 = \mu \cdot \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}, \ \mu \in \mathbb{R} \setminus \{0\}.$$

 $\lambda_2 = 1$: Hier ist $(A - E)v_2 = 0$ zu lösen.

$$\left(\begin{array}{ccc|c}
-2 & -3 & -3 & 0 \\
-2 & -2 & -2 & 0 \\
2 & 3 & 3 & 0
\end{array}\right) \leadsto \left(\begin{array}{ccc|c}
1 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)$$

Somit

$$v_2 = \mu \cdot \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}, \ \mu \in \mathbb{R} \setminus \{0\}.$$

 $\lambda_3 = 2$: Jetzt ist $(A - 2E)v_3 = 0$ zu betrachten.

$$\left(\begin{array}{ccc|c} -3 & -3 & -3 & 0 \\ -2 & -3 & -2 & 0 \\ 2 & 3 & 2 & 0 \end{array}\right) \rightsquigarrow \left(\begin{array}{ccc|c} 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right)$$

Also

$$v_3 = \mu \cdot \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}, \ \mu \in \mathbb{R} \setminus \{0\}.$$

(c) Es gilt $S^{-1}AS = D$ für

$$D = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}, \qquad S = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ -1 & -1 & -1 \end{pmatrix}.$$

(G 39) (Bestimmung einer Jordannormalform)

Betrachten Sie die Matrix

$$B := \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}.$$

- (i) Bestimmen Sie das charakteristische Polynom und die Eigenwerte (mit algebraischer und geometrischer Vielfachheit) sowie die Eigenvektoren von B.
- (ii) Wie muss die Jordannormalform von B aussehen? (Dies können Sie aus (i) schließen)
- (iii) Kann man den Eigenvektor $(1,0,0)^T$ zu einer Jordankette der Länge 2 ergänzen?
- (iv) Was wäre eine bessere Vorgehensweise, um eine Jordankette der Länge 2 zum Eigenwert 1 zu bestimmen? Schreiben Sie dazu hin, was für zwei Vektoren v_1, v_2 gelten muss, damit v_1, v_2 eine Jordankette bilden. Geben Sie dann eine solche Jordankette v_1, v_2 an.
- (v) Ergänzen Sie nun v_1, v_2 durch einen linear unabhängigen Eigenvektor zu einer Basis $\{v_1, v_2, v_3\}$ und geben Sie die Matrix B bezüglich dieser Basis an.

LÖSUNG: (i) Das charakteristische Polynom ist durch

$$p_B(\lambda) = (1 - \lambda)^3$$

gegeben. Der einzige Eigenwert ist somit 1 mit algebraischer Vielfachheit drei. Um die Eigenvektoren zu bestimmen betrachten wir

$$\ker(B - E) = \ker \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

Wir erhalten also zwei linear unabhängige Eigenvektoren $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$ und $\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$. Somit hat der Eigenwert 1 geometrische Vielfachheit zwei.

- (ii) Aus der algebraischen und geometrischen Vielfachheit lässt sich schließen, dass die Jordannormalform von B folgendermaßen aussieht: $J = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$.
- (iii) Um den Vektor $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$ zu einer Jordankette der Länge zwei zu ergänzen, müssen wir einen Vektor v_2 bestimmen, so dass $(B-E)v_2=\begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}v_2=\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$ gilt. Diese Gleichung besitzt allerdings keine Lösung, also kann man $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$ nicht zu einer Jordankette der Länge zwei ergänzen.
- (iv) Wir suchen zwei Vektoren v_1, v_2 so, dass v_1 ein Eigenvektor ist und $(B-E)v_2 = v_1$ gilt. Eine bessere Vorgehensweise als in (iii) ist mit einem Vektor v_2 zu starten, der kein Eigenvektor ist, z.B. $v_2 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$. Dann berechnen wir $v_1 = (B-E)v_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$. Der Vektor v_1 ist nun ein Eigenvektor und wir haben eine Jordankette v_1, v_2 gefunden.

(v) Wir ergänzen v_1, v_2 durch einen linear unabhängigen Eigenvektor, z.B. $v_3 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$, und erhalten eine Basis v_1, v_2, v_3 . Bezüglich dieser neuen Basis ist B nun in Jordannormalform gegeben, d.h.

$$J = S^{-1}BS = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix},$$

wobei

$$S = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}.$$

(G 40) (Jordannormalform)

Geben Sie reelle Matrizen A_i in Jordannormalform mit den folgenden Eigenschaften an:

- (a) A_1 hat Eigenwert 1 mit algebraischer Vielfachheit 3 und geometrischer Vielfachheit 1.
- (b) A_2 hat Eigenwert -1 mit algebraischer Vielfachheit 3 u. geometrischer Vielfachheit 2.
- (c) A_3 hat Eigenwert 2 mit algebraischer Vielfachheit 2 und geometrischer Vielfachheit 1 und Eigenwert -2 mit algebraischer Vielfachheit 2 und geometrischer Vielfachheit 1.

LÖSUNG: Aus den Vielfachheiten der Eigenwerte lassen sich die folgenden Informationen über die Jordanblöcke ablesen:

- Die Summe der algebraischen Vielfachheiten muss gleich der Raumdimension sein, damit eine Jordannormalform existiert.
- Die algebraische Vielfachheit ist die Summe der Größen der Jordanblöcke zum entsprechenden Eigenwert.
- Die geometrische Vielfachheit ist die Anzahl der Jordanblöcke zum entsprechenden Eigenwert

Mögliche Lösungen sind somit:

(a)
$$A_1 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$
.

(b)
$$A_2 = \begin{pmatrix} -1 & 1 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$
.

(c)
$$A_3 = \begin{pmatrix} 2 & 1 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & -2 & 1 \\ 0 & 0 & 0 & -2 \end{pmatrix}$$
.

Hausübungen

(H 33) (Eigenwerte & Eigenvektoren; 3+3 Punkte)

(a) Bestimmen Sie die Eigenwerte und Eigenvektoren der Matrix

$$A = \left(\begin{array}{ccc} 1 & -3 & 3 \\ 3 & -5 & 3 \\ 6 & -6 & 4 \end{array}\right).$$

(b) Die Abbildung $\Phi: \mathbb{R}^3 \to \mathbb{R}^3$, $\Phi(x) = Bx$ mit

$$B = \begin{pmatrix} \frac{1}{4}\sqrt{3} + \frac{1}{2} & \frac{1}{4}\sqrt{2} & -\frac{1}{4}\sqrt{3} + \frac{1}{2} \\ -\frac{1}{4}\sqrt{2} & \frac{1}{2}\sqrt{3} & \frac{1}{4}\sqrt{2} \\ -\frac{1}{4}\sqrt{3} + \frac{1}{2} & -\frac{1}{4}\sqrt{2} & \frac{1}{4}\sqrt{3} + \frac{1}{2} \end{pmatrix}$$

ist eine Drehung um eine Achse. Bestimme die Richtung der Drehachse und den Drehwinkel.

LÖSUNG: (a)
$$\begin{vmatrix} 1 - \lambda & -3 & 3 \\ 3 & -5 - \lambda & 3 \\ 6 & -6 & 4 - \lambda \end{vmatrix} = \begin{vmatrix} 1 - \lambda & -2 - \lambda & 3 \\ 3 & -2 - \lambda & 3 \\ 6 & 0 & 4 - \lambda \end{vmatrix} = (-2 - \lambda) \begin{vmatrix} 1 - \lambda & 1 & 3 \\ 3 & 1 & 3 \\ 6 & 0 & 4 - \lambda \end{vmatrix}$$
$$= (-2 - \lambda) \begin{vmatrix} 1 - \lambda & 1 & 0 \\ 3 & 1 & 0 \\ 6 & 0 & 4 - \lambda \end{vmatrix} = (-2 - \lambda)(4 - \lambda) \begin{vmatrix} 1 - \lambda & 1 \\ 3 & 1 \end{vmatrix}$$
$$= (-2 - \lambda)(4 - \lambda)(1 - \lambda - 3) = (-2 - \lambda)^2(4 - \lambda)$$

Also sind $\lambda_1 = -2$ und $\lambda_2 = 4$ Eigenwerte.

Eigenvektoren zu $\lambda_1 = -2$:

$$\begin{pmatrix} 3 & -3 & 3 \\ 3 & -3 & 3 \\ 6 & -6 & 6 \end{pmatrix} \xrightarrow{I+(-II),III+(-2II)} \begin{pmatrix} 0 & 0 & 0 \\ 3 & -3 & 3 \\ 0 & 0 & 0 \end{pmatrix} \longrightarrow \begin{pmatrix} 0 & 0 & 0 \\ 1 & -1 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

 \Rightarrow Alle Vektoren der Form $\lambda \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} + \mu \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \lambda, \mu \in \mathbb{R} \text{ mit } \lambda \cdot \mu \neq 0, \text{ sind Eigenvektoren.}$

Eigenvektoren zu $\lambda_2 = 4$:

$$\begin{pmatrix} -3 & -3 & 3 \\ 3 & -9 & 3 \\ 6 & -6 & 0 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 1 & -1 \\ 1 & -3 & 1 \\ 1 & -1 & 0 \end{pmatrix} \xrightarrow{I+(-III),II+(-III)} \begin{pmatrix} 0 & 2 & -1 \\ 0 & -2 & 1 \\ 1 & -1 & 0 \end{pmatrix} \longrightarrow \begin{pmatrix} 0 & 0 & 0 \\ 0 & -2 & 1 \\ 1 & -1 & 0 \end{pmatrix}$$

Setze $x_2 = \lambda \Rightarrow x_3 = 2\lambda$ und $x_1 = \lambda$.

Also sind alle Vektoren der Form $\lambda \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$, $\lambda \in \mathbb{R} \setminus \{0\}$, Eigenvektoren.

(b) Bei einer Drehung sind die Vektoren der Drehachse dadurch ausgezeichnet, dass sie durch die Drehung nicht verändert werden, dass also Bx = x gilt. D.h. x ist Eigenvektor zum Eigenwert 1. Wir bestimmen diese Eigenvektoren:

$$\begin{pmatrix} \frac{1}{4}\sqrt{3} - \frac{1}{2} & \frac{1}{4}\sqrt{2} & -\frac{1}{4}\sqrt{3} + \frac{1}{2} \\ -\frac{1}{4}\sqrt{2} & \frac{1}{2}\sqrt{3} - 1 & \frac{1}{4}\sqrt{2} \\ -\frac{1}{4}\sqrt{3} + \frac{1}{2} & -\frac{1}{4}\sqrt{2} & \frac{1}{4}\sqrt{3} - \frac{1}{2} \end{pmatrix}$$

$$\stackrel{4II,III+4I}{\longrightarrow} \begin{pmatrix} \sqrt{3} - 2 & \sqrt{2} & -\sqrt{3} + 2 \\ -\sqrt{2} & 2\sqrt{3} - 4 & \sqrt{2} \\ 0 & 0 & 0 \end{pmatrix}$$

$$\stackrel{I+(\frac{\sqrt{3}-2}{\sqrt{2}})}{\longrightarrow} \begin{pmatrix} 0 & \sqrt{2}(8 - 4\sqrt{3}) & 0 \\ -\sqrt{2} & 2\sqrt{3} - 4 & \sqrt{2} \\ 0 & 0 & 0 \end{pmatrix}.$$

Also ist $(1,0,1)^T$ ein solcher Eigenvektor und damit ist $(1,0,1)^T$ die Richtung der Drehachse. Um den Drehwinkel zu bestimmen, bilden wir einen zur Drehachse senkrechten Vektor. z.B. $x = (0,1,0)^T$ mit der Drehung ab. Es gilt

$$Bx = B \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} \frac{1}{4}\sqrt{2} \\ \frac{1}{2}\sqrt{3} \\ -\frac{1}{4}\sqrt{2} \end{pmatrix}$$

und der Winkel α zwischen x und Bx ist der Drehwinkel:

$$\cos(\alpha) = \frac{x \cdot Bx}{||x|| \cdot ||Bx||} = \frac{\frac{1}{2}\sqrt{3}}{1 \cdot 1} = \frac{\sqrt{3}}{2},$$

also gilt $\alpha = \frac{\pi}{6}$.

(H 34) (Jordannormalform; 2+2+2 Punkte)

Bestimmen Sie jeweils eine Jordannormalform J der folgenden Matrizen:

$$A := \begin{pmatrix} 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}, \quad B := \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} \quad \text{und} \quad C := \begin{pmatrix} 2 & 1 & -1 \\ 0 & 0 & 1 \\ 0 & -1 & 2 \end{pmatrix}.$$

LÖSUNG: Aus den jeweiligen algebraischen und geometrischen Vielfachheiten der Eigenwerte, lässt sich auf die jeweilige Jordannormalform schließen.

Die Matrix A ist eine obere Dreiecksmatrix. Folglich stehen die Eigenwerte auf der Diagonalen. Der einzigste Eigenwert ist 0 mit algebraischer Vielfachheit drei. Um die geometrische Vielfachheit zu bestimmen betrachten wir

$$\ker A = \ker \begin{pmatrix} 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

und sehen, dass dim ker A=1 gilt. Also ist die geometrische Vielfachheit eins. Die Jordannormalform besteht also aus einem Jordanblock der Größe drei, d.h.

$$J_A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

ist eine Jordannormalform von A.

Für das charakteristische Polynom von B gilt

$$p_B(\lambda) = \det \begin{pmatrix} -\lambda & 0 & 1\\ 0 & 1 - \lambda & 0\\ 1 & 0 & -\lambda \end{pmatrix} = -\lambda(1 - \lambda)(-\lambda) - (1 - \lambda) = (1 - \lambda)(\lambda^2 - 1)$$
$$= (1 - \lambda)^2(1 + \lambda)$$

Folglich besitzt B die Eigenwerte 1 mit der algebraischen Vielfachheit zwei und -1 mit der algebraischen Vielfachheit eins. Wir bestimmen nun die geometrische Vielfachheit des Eigenwertes 1:

$$\ker(B - E) = \ker\begin{pmatrix} -1 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & -1 \end{pmatrix} \stackrel{I + III}{=} \ker\begin{pmatrix} -1 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \left\{ \begin{pmatrix} s \\ t \\ s \end{pmatrix} \mid s, t \in \mathbb{R} \right\}.$$

Die geometrische Vielfachheit ist also zwei, d.h. wir erhalten zwei linear unabhängige Eigenvektoren $v_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$ und $v_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$ zum Eigenwert 2. Also ist B diagonalisierbar und

$$J_B = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

ist eine Jordannormalform von B.

Für das charakteristische Polynom von C gilt

$$p_C(\lambda) = \det \begin{pmatrix} 2 - \lambda & 1 & -1 \\ 0 & -\lambda & 1 \\ 0 & -1 & 2 - \lambda \end{pmatrix} = (2 - \lambda)(-\lambda(2 - \lambda) + 1) = (2 - \lambda)(\lambda^2 - 2\lambda + 1)$$
$$= (2 - \lambda)(\lambda - 1)^2.$$

Folglich besitzt C die Eigenwerte 1 mit der algebraischen Vielfachheit zwei und 2 mit der algebraischen Vielfachheit eins.

Bestimmen wir nun die geometrische Vielfachheit des Eigenwertes 1:

$$\ker(C - E) = \ker\begin{pmatrix} 1 & 1 & -1 \\ 0 & -1 & 1 \\ 0 & -1 & 1 \end{pmatrix} \stackrel{III-II}{=} \ker\begin{pmatrix} 1 & 1 & -1 \\ 0 & -1 & 1 \\ 0 & 0 & 0 \end{pmatrix} = \left\{ \begin{pmatrix} 0 \\ s \\ s \end{pmatrix} \mid s \in \mathbb{R} \right\}.$$

Die geometrische Vielfachheit des Eigenwertes 1 ist eins, also besitzt die Jordannormalform von C ein Jordanblock der Größe zwei zum zum Eigenwert 1. Somit ist

$$J_C = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

eine Jordannormalform von C.

(H 35) (Jordannormalform; 2+2+2 Punkte)

Die Matrix $A \in \mathbb{R}^{4\times 4}$ besitze die Eigenwerte 1 und -1. Geben Sie eine Jordannormalform von A an für den Fall, dass

- (i) die algebraische Vielfachheit sowie die geometrische Vielfachheit beider Eigenwerte zwei ist,
- (ii) die algebraische sowie die geometrische Vielfachheit vom Eigenwert 1 eins ist und die algebraische Vielfachheit vom Eigenwert -1 drei und die geometrische zwei ist,
- (iii) die algebraische sowie die geometrische Vielfachheit vom Eigenwert 1 eins ist und die algebraische Vielfachheit vom Eigenwert -1 drei und die geometrische eins ist.

LÖSUNG: Die Aufgabe geht analog zur G40.

(i) Eine Jordannormalform J von A besitzt zu jedem Eigenwert zwei Jordanblöcke der Größe eins, zum Beispiel

$$J = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}.$$

(ii) Eine Jordan
normalform J von A besitzt einen Jordanblock zum Eigenwert 1 der Größe ein
s und zwei Jordanblöcke zum Eigenwert -1 der Größe eins bzw. zwei, zum Beispiel

$$J = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}.$$

(iii) Eine Jordan
nnormalform J von A besitzt einen Jordanblock zum Eigenwert 1 der Größe ein
s und einen Jordanblock zum Eigenwert -1 der Größe drei, zum Beispiel

$$J = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & -1 \end{pmatrix}.$$