Fachbereich Mathematik

Prof. Dr. C. Herrmann

Dipl.-Math. Tobias Hansel Dipl.-Math. Rene Hartmann

Dipl.-Math. Michael Klotz

SS 2009 10.07.2009

13. Übungsblatt zur "Mathematik II für ET, WI(ET), SpoInf, IkT, IST, CE, Mechatronik"

Gruppenübung

Aufgabe G44 (Taylorentwicklung)

Gegeben sei die Funktion $f:(0,+\infty)\times(0,+\infty)\to\mathbb{R}$, mit

$$f(x,y) = x^4 \ln(xy).$$

- (a) Bestimmen Sie die partiellen Ableitungen $D^{(0,0)}f(x,y)$, $D^{(1,0)}f(x,y)$, $D^{(0,1)}f(x,y)$, $D^{($
- (b) Bestimmen Sie das Taylorpolynom 2. Ordnung um den Entwicklungspunkt (1, 1), also:

$$j_{(1,1)}^2(h) = \sum_{|\alpha| \le 2} \frac{1}{\alpha!} (D^{\alpha} f)(1,1) h^{\alpha}.$$

Oder so notiert: $j_{(1,1)}^2((x,y)-(1,1))=\sum_{|\alpha|\leq 2}\frac{1}{\alpha!}(D^{\alpha}f)(1,1)((x,y)-(1,1))^{\alpha}$.

(c) Für jedes $h = (h_1, h_2) \in \mathbb{R}^2$, für das die Verbindungsstrecke zwischen (1, 1) und (1, 1) + h im Definitionsbereich der Funktion f ist, gibt es dann nach dem Satz von Taylor ein $\tau \in]0, 1[$, sodass

$$f((1,1)+h) = j_{(1,1)}^2(h) + \text{Restglied} = \sum_{|\alpha| \le 2} \frac{1}{\alpha!} (D^{\alpha} f)(1,1) h^{\alpha} + \sum_{|\alpha| = 3} \frac{(D^{\alpha} f)((1,1) + \tau h)}{\alpha!} h^{\alpha}$$

gilt. Der Funktionswert f(1,0.8) lässt sich durch das Taylorpolynom approximieren. Schätzen Sie den Fehler nach oben ab, den Sie dabei begehen, indem Sie das Restglied abschätzen. Hinweis: Anstatt für das Restglied alle partiellen Ableitungen dritter Ordnung von f auszurechnen, denken Sie erst darüber nach, welche sie danach wirklich benötigen.

Aufgabe G45 (Extremwertbestimmung: ein Vergleich)

Wir vergleichen die Extremwertbestimmung von reellen Funktionen $f: \mathbb{R} \to \mathbb{R}$ mit einer Veränderlichen mit Funktionen $f: \mathbb{R}^n \to \mathbb{R}$ mit mehreren Veränderlichen.

Falls f differenzierbar bzw. stetig partiell differenzierbar ist, ist die notwendige Bedinung für eine lokale Extremstelle x:

$f \colon \mathbb{R} \to \mathbb{R} \text{ diff.bar}$	$f \colon \mathbb{R}^n \to \mathbb{R}$ stetig partiell diff.bar	Man nennt x einen
f'(x) = 0	$(\operatorname{grad} f)(x) = 0$	stationären Punkt

Sei nun die Funktion f zweimal differenzierbar bzw. zweimal stetig partiell differenzierbar und sei x ein stationärer Punkt. Vervollständigen Sie die folgende Tabelle:

$f: \mathbb{R} \to \mathbb{R}$ 2mal diff.bar	$f \colon \mathbb{R}^n \to \mathbb{R}$ 2mal stetig partiell diff.bar	Dann ist bei x ein
f''(x) > 0	$(\operatorname{Hess} f)(x)$ ist	lokales Minimum
f''(x) < 0	$(\operatorname{Hess} f)(x)$ ist	lokales Maximum
_	$(\operatorname{Hess} f)(x)$ ist	Sattelpunkt
f''(x) = 0	$(\operatorname{Hess} f)(x)$ ist	(wir wissen es nicht)

mit den Einträgen:

- (a) indefinit
- (b) positiv definit
- (c) negativ definit
- (d) (positiv/negativ) semidefinit

Aufgabe G46 (Extremwertbestimmung)

Gegeben sei die Funktion $f: (\mathbb{R} \setminus \{0\}) \times (\mathbb{R} \setminus \{0\}) \to \mathbb{R}$, mit

$$f(x,y) = \frac{1}{y} - \frac{1}{x} - 9x + 4y .$$

- (a) Bestimmen Sie alle stationären Punkte von f. (Stationäre Punkte sind die Kandidaten für lokale Extrema.)
- (b) Bestimmen Sie alle Stellen, in denen die Funktion ein lokales Extremum hat und geben Sie jeweils an, ob es sich um ein lokales Maximum oder Minimum handelt.

Aufgabe G47 (Erinnerung)

Kreuzen Sie korrekte Aussagen an:

- \square Eine Teilmenge $K \subset \mathbb{R}^n$ heißt kompakt, wenn sie abgeschlossen und beschränkt ist.
- \square Eine Teilmenge $K \subset \mathbb{R}^n$ heißt kompakt, wenn sie offen und beschränkt ist.
- \square Jede stetige reelle Funktion $f \colon K \to \mathbb{R}$ auf einer kompakten Menge $K \subseteq \mathbb{R}^n$ nimmt ein Maximum und ein Minmum an.

Aufgabe G48 (Methode von Lagrange)

Bestimmen Sie mithilfe einer Lagrange-Funktion die Extremwerte von

$$f(x,y) = xy, \quad x, y \in \mathbb{R},$$

unter der Nebenbedingung $x^2 + 4y^2 - 2 = 0$.

Hausübung

Aufgabe H39 (Multiindizes)

(4 Punkte)

Zur Erinnerung: Ein Multiindex ist ein n-Tupel $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_n) \in \mathbb{N}_0^n$ (vgl 28.1.2). Betrachten wir das Beispiel $\alpha = (1, 4, 2)$.

- (a) Geben Sie die Ordnung $|\alpha|$ und die Fakultät $\alpha!$ von α an.
- (b) Was versteht man unter h^{α} für ein $h \in \mathbb{R}^n$? Rechnen Sie exemplarisch mit h = (0.5, 2, 3).

- (c) Sei $f: \mathbb{R}^3 \to \mathbb{R}$ eine $|\alpha|$ -mal stetig partiell differenzierbare Funktion. Was versteht man unter $(D^{\alpha}f)(x,y)$? Kreuzen Sie alle wahren Aussagen an:
 - $\Box \ (D^{\alpha}f)(x,y,z) = \frac{\partial^{|\alpha|}f}{\partial x\,\partial y^4\,\partial z^2}(x,y,z)$
 - $\Box (D^{\alpha}f)(x,y,z) = f_{xyyyyzz}(x,y,z)$
 - $\Box (D^{\alpha}f)(x,y,z) = f_{xyyzzzz}(x,y,z)$
 - $\Box (D^{\alpha}f)(x,y,z) = f_{yyyyzxz}(x,y,z)$
- (d) Bestimmen Sie alle Multiindizes $\beta \in \mathbb{N}_0^3$ mit $|\beta| = 2$ und geben Sie jeweils $\beta!$ an.
- (e) Sei $f: \mathbb{R}^3 \to \mathbb{R}$ eine 2-mal stetig partiell differenzierbare Funktion. Was wäre zum Beispiel das Ergebnis von $\sum_{|\beta|=2} \frac{1}{\beta!} (D^{\beta} f)(x,y,z)$? Kreuzen Sie die richtige Antwort an:
 - $\Box \frac{1}{2} f_{xx}(x,y,z) + f_{xy}(x,y,z) + f_{xz}(x,y,z) + \frac{1}{2} f_{yy}(x,y,z) + f_{yz}(x,y,z) + \frac{1}{2} f_{zz}(x,y,z)$
 - $\Box \ \ \frac{1}{2} f_{xx}(x,y,z) + \frac{1}{2} f_{xy}(x,y,z) + \frac{1}{2} f_{xz}(x,y,z) + \frac{1}{2} f_{yy}(x,y,z) + \frac{1}{2} f_{yz}(x,y,z) + \frac{1}{2} f_{zz}(x,y,z)$

Aufgabe H40 (Taylorentwicklung)

(6 Punkte)

Bestimmen Sie die Taylorentwicklung der Funktion

$$f \colon \mathbb{R}^2 \to \mathbb{R}, \quad f(x,y) = e^{2x} \sin(x+2y)$$

im Punkt (0,0) bis einschließlich der Glieder 2. Ordnung. Berechnen Sie eine Näherung für f(0.1,0.1).

Aufgabe H41 (Extremwertbestimmung)

(1+4+4 Punkte)

Gegeben sei die Funktion

$$f(x,y) = e^{xy+x-y}$$

innerhalb des abgeschlossenen Dreiecks D mit den Eckpunkten (0,0), (4,0) und (0,-4).

- (a) Skizzieren Sie den Definitionsbereich und tragen Sie nachfolgende Ergebnisse ein.
- (b) Untersuchen Sie die Funktion auf etwaige lokale Extremalstellen oder Sattelpunkte im Innern von D und bestimmen Sie deren Typ.
- (c) Diskutieren Sie das Verhalten von f auf dem Rand von D und ermitteln Sie die globalen Extremalstellen von f auf ganz D.

Aufgabe H42 (Methode von Lagrange)

(5 Punkte)

Gegeben seien die Funktionen

$$f: \mathbb{R}^2 \to \mathbb{R}, \quad f(x,y) = e^{x+3y},$$

 $g: \mathbb{R}^2 \to \mathbb{R}, \quad g(x,y) = x^2 + y^2 - 10.$

Bestimmen Sie die Extrema von f unter der Nebenbedingung g(x,y) = 0.

Abgabe der Hausübungen: Am Freitag den 17. Juli 2009 vor der Übung.

(Hinweise auf Fehler bei diesen Aufgaben bitte an Michael Klotz, kl...@math...tik.tu-darmstadt.de)