Fachbereich Mathematik Prof. Dr. R. Farwig Ch. Komo J. Prasiswa R. Schulz

SS 2009 13.07.2009

13. Übungsblatt zur "Analysis II"

Gruppenübung

Aufgabe G1 (Volumenberechnung mit Kugelkoordinaten)

Skizzieren Sie grob die Menge B und berechnen Sie ihr Volumen:

$$B := \{(x, y, z) \in \mathbb{R}^3 : z^2 \ge x^2 + y^2 \text{ und } 0 \le z \le \sqrt{1 - x^2 - y^2} \}.$$

Lösung:

Die Menge B ist eine abgeschlossene "Eistüte," die aus der abgeschlossenen Einheitskugel herausgeschnitten wurde: Zur Berechnung des Volumens von B benutzen wir Kugelkoordinaten,

$$K: [0, \infty] \times [0, \pi] \times [0, 2\pi] \to \mathbb{R}$$
, $K(r, \theta, \phi) := (r \sin \theta \cos \phi, r \sin \theta \sin \phi, r \cos \theta)$.

Die Menge $Q:=[0,1]\times[0,\pi/4]\times[0,2\pi]$ wird von K auf B abgebildet. Da $K|_Q$ nicht injektiv, können wir die Transformationsformel nicht direkt anwenden. Jedoch ist $Q_\epsilon:=[\epsilon,1]\times[\epsilon,\pi/4]\times[\epsilon,2\pi-\epsilon]$ eine kompakte Menge derart, dass $K|_{Q_\epsilon}$ injektiv ist. Offensichtlich ist $K|_{Q_\epsilon}$ stetig differenzierbar, und det $K'(r,\theta,\phi)=r^2\sin\theta>0$. $K|_{Q_\epsilon}$ hat eine stetig differenzierbare Umkehrabbildung. Es sei $V_\epsilon:=K(Q_\epsilon)$.

Also gilt $|V_{\epsilon}|=\int\limits_{Q_{\epsilon}}|\det(K'(r,\theta,\phi)|d(r,\theta,\phi)$ und nach Grenzübergang für $\epsilon\to 0$

$$|B| = \int_{Q} |\det J_{(r,\theta,\phi)}(K)| d(r,\theta,\phi)$$

$$= \int_{0}^{1} \int_{0}^{\pi/4} \int_{0}^{2\pi} r^{2} \sin \theta \, d\phi \, d\theta \, dr$$

$$= 2\pi \int_{0}^{1} \int_{0}^{\pi/4} r^{2} \sin \theta \, d\theta \, dr = 2\pi \int_{0}^{1} r^{2} \left[-\cos \theta \right]_{\theta=0}^{\pi/4} dr$$

$$= 2\pi \left(1 - \sqrt{2}/2 \right) \left[r^{3}/3 \right]_{r=0}^{1} = \frac{2\pi}{3} \left(1 - \frac{\sqrt{2}}{2} \right),$$

Unter Benutzung des Satzes von Fubini.

Aufgabe G2 (Jacobi-Abbildung)

Die Jacobi-Abbildung $J: \mathbb{R}^2 \to \mathbb{R}^2$ ist gegeben durch

$$J\left(\begin{array}{c} u\\v\end{array}\right) = \left(\begin{array}{c} u(1-v)\\uv\end{array}\right).$$

a) Zeigen Sie, dass J den Streifen $S := \mathbb{R}_+ \times (0,1)$ bijektiv auf \mathbb{R}^2_+ abbildet und die Rechtecke $S_n = (0,n) \times (0,1)$ auf die Dreiecke $D_n = \{(x,y) : 0 < x, 0 < y, x+y < n\}$. Geben Sie die Umkehrabbildung an.

b) Für eine unbeschränkte Menge $T \subset \mathbb{R}^2$ definieren wir

$$\int_{T} f d(x, y) := \lim_{n \to \infty} \int_{T_n} f d(x, y)$$

falls der Grenzwert existiert; dabei seien die Mengen T_n Jordan-messbar und es gelte $T_n \subset T_{n+1} \subset T$ für alle $n \in \mathbb{N}$. Man beachte, dass diese Definition gegebenenfalls von der Wahl der Folge $(T_n)_{n \in \mathbb{N}}$ abhängt.

Zeigen Sie, $f \geq 0$ ist genau dann (für eine geeignete Folge an Mengen $T_n \subset T$) über \mathbb{R}^2_+ integrierbar, wenn $(f \circ J) \cdot u$ über S(für eine geeignete Folge an Mengen) integrierbar ist. Ferner gilt dann

$$\int\limits_{\mathbb{R}^2_+} f(x,y) \, d(x,y) = \int\limits_S f(u(1-v),uv) \cdot u \, d(u,v).$$

c) Es seien p,q>0. Benutzen Sie die obige Gleichung, um zu zeigen, dass für das Eulersche Betaintegral

$$B(p,q) = \int_{0}^{1} (1-t)^{p-1} t^{q-1} dt = \frac{\Gamma(p)\Gamma(q)}{\Gamma(p+q)}$$

gilt, wobei $\Gamma(p)=\int\limits_0^\infty x^{p-1}e^{-x}\,dx$ die Gamma-Funktion ist.

Lösung:

a) Wir lösen

$$\left(\begin{array}{c} u(1-v) \\ uv \end{array}\right) = \left(\begin{array}{c} x \\ y \end{array}\right)$$

nach u und v auf. Es gilt $v=\frac{y}{u}$ und somit $x=u(1-\frac{y}{u})$, daraus folgt u=x+y und $v=\frac{y}{x+y}$. Für x,y>0 erhalten wir somit u,v mit J(u,v)=(x,y), das heißt J bildet surjektiv auf \mathbb{R}^2_+ ab. Injektivität ist ebenso gegeben, da

$$\left(\begin{array}{c} u(1-v) \\ uv \end{array}\right) = \left(\begin{array}{c} \hat{u}(1-\hat{v}) \\ \hat{u}\hat{v} \end{array}\right)$$

 $u = \hat{u}$ und $v = \hat{v}$ impliziert.

Die Umkehrabbildung ist

$$J^{-1} \left(\begin{array}{c} x \\ y \end{array} \right) = \left(\begin{array}{c} x+y \\ \frac{y}{x+y} \end{array} \right).$$

Für $(x,y) \in D_n$, $J^{-1}(x,y) \in S_n$, damit ist die Surjektivität gegeben.

b) Auf S_n ist J ist stetig differenzierbar, injektiv und hat eine stetig differenzierbare Umkehrabbildung. Somit folgt aus dem Transformationssatz

$$\int_{S_n} f(u(1-v), uv) \cdot u \, d(u, v) = \int_{D_n} f \, d(x, y).$$

Mit der Grenzwertbildung folgt die Behauptung.

c) Verwende $\Gamma(p) = \int\limits_0^\infty x^{p-1} e^{-x} \, dx$ und $\Gamma(q) = \int\limits_0^\infty y^{q-1} e^{-y}$.

Unter der Verwendung des Satzes von Fubini und der obigen Formel gilt:

$$\begin{split} \Gamma(p)\Gamma(q) &= \int\limits_0^\infty x^{p-1}e^{-x}\,dx \int\limits_0^\infty y^{q-1}e^{-y} \\ &= \int\limits_{\mathbb{R}^2_+} x^{p-1}y^{q-1}e^{-(x+y)}\,d(x,y) \\ &= \int\limits_s (u(1-v))^{p-1}(uv)^{q-1}e^{-u}u\,d(u,v) \\ &= \int\limits_0^\infty u^{p-1}u^{q-1}e^{-u}u\,du \int\limits_0^1 (1-v)^{p-1}v^{q-1}\,dv \\ &= \Gamma(p+q)B(p,q) \end{split}$$

Aufgabe G3 (Volumenberechnung mit Zylinderkoordinaten)

Bestimme das Volumen, welches innerhalb des Zylinders $\{(x,y,z) \in \mathbb{R}^3 : x^2 + y^2 \le 4\}$, über der Ebene z = 0 und unterhalb des durch die Gleichung $(x+2)^2 + y^2 = 4z$ gegebenen Paraboloids liegt.

Lösung:

Die Höhe muß ein wenig umgeformt werden:

$$(x+2)^2 + y^2 = 4z \quad \Leftrightarrow \quad (r\cos\varphi + 2)^2 + r^2\sin^2\varphi = 4t$$
$$\Leftrightarrow \quad t = \frac{1}{4}r^2 + r\cos\varphi + 1.$$

Damit rechnen wir dann mit dem Transformationssatz (checken der Vorraussetzungen wie in G1):

$$\begin{split} V &= \iiint_T 1 \ dx \ dy \ dz = \int_0^2 \int_0^{2\pi} \int_0^{\frac{1}{4}r^2 + r\cos\varphi + 1} r \ dt \ d\varphi \ dr \\ &= \int_0^2 \int_0^{2\pi} \left(\frac{1}{4}r^2 + r\cos\varphi + 1\right) r \ d\varphi \ dr = \int_0^2 \left[\frac{1}{4}r^3\varphi + r^2\sin\varphi + r\varphi\right]_{\varphi=0}^{\varphi=2\pi} dr \\ &= \int_0^2 \left(\frac{\pi}{2}r^3 + 2r\pi\right) \ dr = \left[\frac{\pi}{8}r^4 + \pi r^2\right]_{r=0}^{r=2} = 6\pi. \end{split}$$

Aufgaben zu Integralsätzen (zum Selbststudium)

Aufgabe G4 (Satz von Green)

Es sei $M \subseteq \mathbb{R}^2$ ein BV-Normalbereich, dessen Rand sich durch die stückweise stetig differenzierbare Funktion $\gamma \colon [0, 2\pi] \to \mathbb{R}^2$ der Form

$$\gamma(\phi) = \begin{pmatrix} r(\phi)\cos(\phi) \\ r(\phi)\sin(\phi) \end{pmatrix}$$

für ein $r: [0, 2\pi] \to \mathbb{R}_+$ mit $r(0) = r(2\pi)$ parametrisieren läßt.

a) Zeige mit Hilfe des Greenschen Satzes, daß sich die Fläche von M durch

$$|M| = \frac{1}{2} \int_0^{2\pi} r^2(\phi) d\phi$$

berechnen läßt.

b) Berechne für den Fall der Kardioide $r(\phi) = 1 + \cos(\phi)$ den Flächeninhalt von M.

Lösung:

a) Es gilt

$$|M| = \int_{M} 1d(x,y)$$

$$= \frac{1}{2} \int_{M} \operatorname{rot} \begin{pmatrix} -y \\ x \end{pmatrix} d(x,y)$$

$$\stackrel{\text{Green}}{=} \frac{1}{2} \int_{\partial M} \begin{pmatrix} -y \\ x \end{pmatrix} d(x,y)$$

$$= \frac{1}{2} \int_{0}^{2\pi} \begin{pmatrix} -r(\phi)\sin(\phi) \\ r(\phi)\cos(\phi) \end{pmatrix} \cdot \begin{pmatrix} -r(\phi)\sin(\phi) + r'(\phi)\cos(\phi) \\ r(\phi)\cos(\phi) + r'(\phi)\sin(\phi) \end{pmatrix} d\phi$$

$$= \frac{1}{2} \int_{0}^{2\pi} [r^{2}(\phi)(\sin^{2}(\phi) + \cos^{2}(\phi) + 0]d\phi$$

$$= \frac{1}{2} \int_{0}^{2\pi} r^{2}(\phi)d\phi.$$

b)

$$|M| = \frac{1}{2} \int_0^{2\pi} (1 + 2\cos(\phi) + \cos^2(\phi)) d\phi$$
$$= \frac{1}{2} \int_0^{2\pi} (1 + 2\cos(\phi) + \frac{1}{2} [1 + \cos(2\phi)] d\phi,$$

und da $\cos(2\phi) = \cos^2(\phi) - \sin^2(\phi) = \cos^2(\phi) - (1 - \cos^2(\phi))$ folgt $\cos^2(\phi) = \frac{1}{2}[1 + \cos(2\phi)]$. Also gilt

$$|M| = \frac{1}{2} \left[\frac{3}{2} \phi + 2\sin(\phi) + \frac{\sin(2\phi)}{4} \right]_0^{2\pi} = \frac{3}{2}\pi.$$

Aufgabe G5 (Rechenaufgabe zum Gaußschen Integralsatz)

Wir betrachten die Menge $K:=\{(x,y,z)\in\mathbb{R}^3\colon x^2+y^4+z^6\leq 1\}$ und das Vektorfeld

$$F: \mathbb{R}^3 \to \mathbb{R}^3$$
, $F(x, y, z) := (x^2 y^3, xz + xy^4, \cos(xy))$.

- a) Zeigen Sie, dass K ein Kompaktum mit glattem Rand ist.
- b) Berechnen Sie das Flächenintegral

$$\int_{\partial K} F(x, y, z) \cdot n \ do \,,$$

indem Sie es als ein geeignetes Volumenintegral umschreiben; hierbei ist $n: \partial K \to \mathbb{R}^3$ das äußere Normalenfeld von K.

Beachten Sie, dass wir n gar nicht explizit ausrechnen müssen!

Lösung:

(a) Offensichtlich ist K abgeschlossen und K ist beschränkt, da $|x|, |y|, |z| \le 1$ für alle $(x, y, z) \in K$. Also ist K kompakt. Da $\partial K \subseteq U := \mathbb{R}^3 \setminus \{(0,0,0)\}$ und $K \cap U = \{(x,y,z) \in U : \psi(x,y,z) \le 0\}$ mit $\psi \colon U \to \mathbb{R}, \ \psi(x,y,z) := x^2 + y^4 + z^6 - 1$ und $\operatorname{grad} \psi(x,y,z) = (2x,4y^3,6z^5) \neq (0,0,0)$ für alle $(x,y,z) \in U$, ist K ein Kompaktum mit glattem Rand.

(b) Da div $F(x, y, z) = 2xy^3 + 4xy^3 = 6xy^3$, erhalten wir mit dem Gaußschen Integralsatz

$$\begin{split} \int F(x,y,z) \cdot n(x,y,z) \, do &= \int_K \operatorname{div} F(x,y,z) \, d(x,y,z) \, = \, \int_K 6 \, x y^3 \, d(x,y,z) \\ &= \int_{-1}^1 \int_{-\sqrt[4]{1-x^2}}^{\sqrt[4]{1-x^2}} \int_{-\sqrt[6]{1-x^2-y^4}}^{\sqrt[6]{1-x^2-y^4}} 6 \, x y^3 \, dz \, dy \, dx \\ &= \int_{-1}^1 \int_{-\sqrt[4]{1-x^2}}^{\sqrt[4]{1-x^2}} 12 \, x y^3 \sqrt[6]{1-x^2-y^4} \, dy \, dx \\ &= \int_{-1}^1 \left[-\frac{18}{7} \left(1 - x^2 - y^4 \right)^{7/6} \right]_{y=-\sqrt[4]{1-x^2}}^{y=-\sqrt[4]{1-x^2}} \, dx \, = \, 0 \, . \end{split}$$

Aufgabe G6 (Stockscher Integralsatz))

Sei $D = \{(u, v) \in \mathbb{R} : u^2 + v^2 < 1\},\$

$$F: \mathbb{R}^2 \to \mathbb{R}^3, \quad F(u, v) = (u, v, uv)$$

und $\Omega = F(D)$ das durch F definierte Flächenstück mit Parametermenge D und Rand $\partial\Omega = F(\partial D)$. Die Orientierung von $\partial\Omega$ werde durch die mathematisch positive Orientierung von ∂D definiert.

a) Berechnen Sie die Oberfläche von F, d.h.

$$\int_{\Omega} do.$$

b) Berechnen Sie das Oberflächenintegral

$$\int_{\Omega} \operatorname{rot} H \cdot n \, do.$$

für das Vektorfeld $H(x_1, x_2, x_3) = (-x_2, x_1, 0)$ direkt sowie mit Hilfe des Integralsatzes von Stokes.

Lösung:

a) Es gilt

$$f' = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ v & u \end{pmatrix}, \quad N(u, v) = \begin{pmatrix} -v \\ -u \\ 1 \end{pmatrix}.$$

Für das Oberflächenintegral gilt

$$\int_{\Omega} do = \int_{D} |N(u, v)| d(u, v) = \int_{D} \sqrt{v^2 + u^2 + 1} d(u, v).$$

Unter Verwendung von Polarkoordinaten erhält man

$$\int_{\Omega} do = \int_{0}^{1} \int_{0}^{2\pi} \sqrt{r^2 + 1} r \, d\rho dr = 2\pi \frac{1}{3} (\sqrt{8} - 1).$$

13. Übung

Analysis II

b) - mit Stokes:

$$\int\limits_{\Omega} \operatorname{rot} H \cdot n \, do = \int\limits_{\partial \Omega} H \cdot dx$$

Der Weg $\gamma[0,2\pi]\to\mathbb{R}^3,\,\gamma(t)=F(\cos t,\sin t)$ parametrisiert den Rand von $\Omega.$ Somit gilt

$$\int\limits_{\partial\Omega} H \cdot dx = \int\limits_{\gamma} H \cdot dt = \int\limits_{0}^{2\pi} H(\cos t, \sin t, \cos t \sin t) \cdot \left(\begin{array}{c} -\sin t \\ \cos t \\ -\sin^2 t + \cos^2 t \end{array} \right) \, dt = 2\pi.$$

- direkt:

$$rot H = (0, 0, 2)^t$$

Das heisst:

$$\int\limits_{\Omega} \operatorname{rot} H \cdot n \, do = \int\limits_{\Omega} 2 \frac{1}{|N(u,v)|} do = \int\limits_{D} 2 \frac{|N(u,v)|}{|N(u,v)|} d(u,v) = 2\pi.$$