Fachbereich Mathematik Prof. Dr. R. Farwig Ch. Komo J. Prasiswa R. Schulz

SS 2009 29.06.2009

11. Übungsblatt zur "Analysis II"

Gruppenübung

Aufgabe G1 (Potentiale)

Wir betrachten das Vektorfeld $f: \mathbb{R}^2 \to \mathbb{R}^2$ mit

(i)
$$f(x) = \begin{pmatrix} 3x_1x_2^2 \\ 3x_1^2x_2 \end{pmatrix}$$
 (ii) $f(x) = \begin{pmatrix} e^{x_2}\sin x_1 \\ e^{x_2}\cos x_1 \end{pmatrix}$.

Besitzt f jeweils ein Potential? Geben Sie gegebenenfalls eine Potentialfunktion φ an.

Aufgabe G2 (Nullmengen)

- Zeigen Sie, dass $(\mathbb{Q} \cap [0,1])^2$ eine Lebesgue-Nullmenge ist.
- Zeigen Sie, dass $(\mathbb{Q}\cap [0,1])^3$ keine Jordan-Nullmenge ist.
- Zeigen Sie, dass $\{\frac{1}{n} \mid n \in \mathbb{N} \setminus \{0\}\}$ eine Jordan-Nullmenge ist.

Aufgabe G3 (Satz von Fubini)

Berechnen Sie das Integral $\int_A f \ d(x, y)$, wobei...

(a) A das Quadrat mit den Eckpunkten (0,0), (0,1), (1,0), (1,1) ist und

$$f(x,y) := x^2 + y^3 + 2xy^2;$$

(b) A das Quadrat mit den Eckpunkten (0,0), $(0,\pi)$, $(\pi,0)$, (π,π) ist und

$$f(x,y) := (xy - 3\cos(x+y)) \chi_T.$$

Dabei sei T das Dreieck mit den Eckpunkten (0,0), $(0,\pi)$, $(\pi,0)$.

Hausübung

Aufgabe H1 (Gradientenfelder)

(4 Punkte)

Für $x \in \mathbb{R}^3$ sei $||x||_2$ die euklidsche Norm. Zeigen Sie, dass folgende Vektorfelder

$$f_n: \mathbb{R}^3 \setminus \{0\} \to \mathbb{R}^3, \quad f_n(x) := \frac{x}{\|x\|_2^n}, n \in \mathbb{N},$$

Gradientenfelder sind, indem Sie die zugehörigen Potentiale $v_n : \mathbb{R}^3 \setminus \{0\} \to \mathbb{R}$ bestimmen.

Aufgabe H2 (Jordan-Nullmengen)

(4 Punkte)

Zeigen Sie: Sei $M \subset \mathbb{R}^m$ eine beschränkte Menge mit endlich vielen Häufungspunkten. Dann ist M eine Jordan-Nullmenge.

Aufgabe H3 (Riemann-Integral)

(4 Punkte)

Seien $R \subset \mathbb{R}^m$, $Q \subset \mathbb{R}^n$ kompakte Rechtecke und $f \colon R \to \mathbb{R}$, $g \colon Q \to \mathbb{R}$ Riemann-integrierbar. Zeigen Sie, dass

$$h: R \times Q \rightarrow \mathbb{R}$$

 $(x,y) \mapsto f(x)g(y)$

Riemann-integrierbar ist und dass

$$\int_{R\times Q}h(x,y)d(x,y)=\Big(\int_Rf(x)dx\Big)\cdot\Big(\int_Qg(y)dy\Big)$$

gilt.