Fachbereich Mathematik Prof. Dr. S. Roch Dr. B. Debrabant D. Küpper S. Löbig

10.06.2009

Analysis 1 für M, LaG M, Übung 9

Gruppenübung

Konvergenz und absolute Konvergenz

Uberprüfen Sie, welche der folgenden Reihen konvergiert und welche absolut konvergiert.

1.
$$\sum_{n=0}^{\infty} (-1)^n (\sqrt{n+1} - \sqrt{n});$$

1.
$$\sum_{n=0}^{\infty} (-1)^n (\sqrt{n+1} - \sqrt{n});$$
 2.
$$\sum_{n=1}^{\infty} b_n \text{ mit } b_n = \begin{cases} \frac{-2}{n} & \text{falls 3 Teiler von } n \\ \frac{1}{n} & \text{sonst} \end{cases}$$

G2Cauchy Produkt

Es sei
$$0 < q < 1$$
, $a_k = q^k$ und $b_k = (-q)^k$. Berechne $\sum_{n=0}^{\infty} (\sum_{l=0}^n a_{n-l} b_l)$.

G3Bauklotztürme

Ein kleiner Dämon hat in seiner Bauklotzsammlung zu jeder reellen Zahl $r \in (0,1)$ genau einen würfelförmigen Bauklotz der Seitenlänge r. Für welche reellen Zahlen $V \in \mathbb{R}$ kann er abzählbar unendlich viele Bauklötze zu einen Turm aufeinander stellen, so dass die Höhe des Turmes 1 und das Volumen V ist?

Hausübung

H1VAbsolute Konvergenz (4 Punkte)

1. Sei $\sum_{j=1}^{\infty} a_j$ eine absolut konvergente Reihe, so dass $a_j \neq -1$ für alle $j \in \mathbb{N}$. Zeigen Sie, dass dann auch die Reihe

$$\sum_{j=1}^{\infty} \frac{a_j}{1 + a_j}$$

absolut konvergiert.

2. Beweisen oder widerlegen Sie die folgende Aussage: Sei $(a_j)_{j\in\mathbb{N}}$ eine Folge, so dass die Reihe

$$\sum_{j=1}^{\infty} \sqrt{|a_j a_{j+1}|}$$

konvergiert. Dann konvergiert $\sum_{j=1}^{\infty} a_j$ absolut.

H 2 VKonvergenzkriterien (6 Punkte)

Für welche $\alpha \in \mathbb{R}$ konvergiert die Reihe

$$\sum_{k=1}^{\infty} \left(\alpha + \frac{1}{k} \right)^k ?$$

H3 Cauchy Produkt (4 Punkte)

Es seien $a_0 = -1$, $b_0 = 2$, $a_k = 1$ und $b_k = 2^k$ für $k \ge 1$. Zeigen Sie, dass die aus den Folgen (a_n) , (b_n) gebildeten Reihen jeweils divergieren, ihre Cauchy Produktreihe jedoch konvergiert.