Fachbereich Mathematik Prof. Dr. Steffen Roch Dr. Birgit Debrabant Dominique Küpper Stefan Löbig

SS2009 27.05.2009

7. Übungsblatt "Analysis 1 für Mathematik, LAG/Mathematik, Physik"

Gruppenübung

Aufgabe G25 (Konvergenz von Folgen)

Entscheiden Sie (mit Nachweis), welche der Folgen (a_n) , (b_n) und (c_n) konvergiert, und berechnen Sie gegebenenfalls den Grenzwert.

- (a) $a_n = \frac{n}{2^n}$
- (b) $b_n = n! 2^n$
- (c) $c_n = \sqrt{n}(\sqrt{n} \sqrt{n+2})$

Hinweis: Zeigen Sie für (a) zunächst per Induktion, dass $n^2 \le 2^n$ für $n \ge 4$ gilt.

Aufgabe G26 (Partielle Grenzwerte)

Bestimmen Sie alle partiellen Grenzwerte der Folgen

$$a_n = \frac{2^n + (-3)^n}{(-2)^n + 3^n}, \quad b_n = \sqrt[n]{n!}.$$

Aufgabe G27 (Limes superior)

Sei $(a_n)_{n\in\mathbb{N}}$ eine beschränkte, reelle Folge.

- (a) Zeigen Sie, dass die Folge $A_k := \sup\{a_n : n \ge k\}$ konvergiert.
- (b) Ist $A = \limsup a_n$, also der größte partielle Grenzwert, so gibt es zu jedem $\varepsilon > 0$ ein $N \in \mathbb{N}$, so dass $a_n \leq A + \varepsilon$ für alle $n \geq N$ gilt.

Aufgabe G28 (S Folge auf dem Kreis)

Es sei $r \in \mathbb{Q}$. Bestimmen Sie die partiellen Grenzwerte der durch $z_n = e^{i2\pi rn}$ definierten komplexen Folge (z_n) .

Hinweis: Setzen Sie $r = \frac{p}{q}$ mit $p \in \mathbb{Z}$, $q \in \mathbb{N} \setminus \{0\}$, so dass der Bruch $\frac{p}{q}$ gekürzt ist. Aus $\frac{p}{q}\alpha \in \mathbb{Z}$ (mit $\alpha \in \mathbb{Z}$) folgt dann $\frac{\alpha}{q} \in \mathbb{Z}$.

Hausübung

Aufgabe H21 (V Partielle Grenzwerte)

(4 Punkte)

Sei (M, d) ein metrischer Raum und $(a_n)_{n \in \mathbb{N}}$ eine beschränkte Folge in M. Beweisen Sie, dass die Menge aller partiellen Grenzwerte abgeschlossen und beschränkt ist.

Aufgabe H22 (Partielle Grenzwerte)

(5 Punkte)

Eine Folge (a_n) sei rekursiv definiert durch $a_0 = a_1 = 0$, $a_{2k} = \frac{1}{2}a_{2k-1}$ und $a_{2k+1} = \frac{1}{2} + a_{2k}$ für $k \ge 1$. Bestimmen Sie alle partiellen Grenzwerte dieser Folge.

Hinweis: Berechnen Sie zunächst die ersten Folgeglieder von a_{2n} und folgern Sie daraus eine Formel für a_{2n} , die nicht mehr von anderen Folgegliedern abhängt. Schließen Sie daraus eine Formel für die Folge a_{2n+1} . Beweisen Sie die Formeln jeweils mit vollständiger Induktion, und bestimmen Sie dann die Grenzwerte.

Aufgabe H23 (Produktfolgen)

(3 Punkte)

- (a) Sei $(a_n)_{n\in\mathbb{N}}$ eine strikt positive Folge und sei $q_k := \frac{a_{k+1}}{a_k}$. Zeigen Sie: $(a_n)_{n\in\mathbb{N}}$ ist genau dann konvergent, wenn die Folge $(\prod_{k=1}^n q_k)_{n\in\mathbb{N}}$ konvergent ist. Wie lautet in diesem Fall der Zusammenhang zwischen $\lim_{n\to\infty} a_n$ und $\lim_{n\to\infty} \prod_{k=1}^n q_k$?
- (b) Berechnen Sie $\lim_{n\to\infty} \prod_{k=1}^n \frac{k^2+2k}{k^2+2k+1}$.

Aufgabe H24 (V Limes superior)

(3 Punkte)

Seien A_k und a_n wie in Aufgabe G27.

- (a) Zeigen Sie, dass $\lim_{k\to\infty} A_k = \limsup_{n\to\infty} a_n$ gilt.
- (b) Ist $(b_n)_{n\in\mathbb{N}}$ eine weitere beschränkte Folge, und gilt $a_n,b_n\geq 0$, so gilt auch

$$\limsup_{n\to\infty} (a_n b_n) \le \limsup_{n\to\infty} a_n \cdot \limsup_{n\to\infty} b_n.$$

Hinweis: Verwenden Sie Aufgabe G27(b). Für Aufgabenteil (a) beweisen Sie die Ungleichungen $\lim_{k\to\infty} A_k \leq \limsup_{n\to\infty} a_n$ und $\lim_{k\to\infty} A_k \geq \limsup_{n\to\infty} a_n$.

