Fachbereich Mathematik AG Algebra, Geometrie, Funktionalanalysis Prof. Dr. K.-H. Neeb SS 2009

15. Juni 2009

8. Problem sheet on "Lie Groups and Their Representations"

Exercise 8.1 Let $C \subseteq V$ be a convex cone in the real vector space V and $\alpha \in V^*$ with $\alpha(c) > 0$ for $0 \neq c \in C$. Show that

$$S := \{ c \in C \colon \alpha(c) = 1 \}$$

satisfies:

(a) $C = \mathbb{R}_+ S$.

(b) $x \in S$ is an extreme point of S if and only if $\mathbb{R}_+ x$ is an extremal ray of C.

Exercise 8.2 Let $\mathcal{D}_1, \mathcal{D}_2 \subseteq \mathbb{C}$ be two open subsets and $\varphi \colon \mathcal{D}_1 \to \mathcal{D}_2$ be a biholomorphic map, i.e., φ is bijective and φ^{-1} is also holomorphic. Let $\mathcal{B}(\mathcal{D}) := L^2(\mathcal{D}, dz) \cap \mathcal{O}(\mathcal{D})$ denote the *Bergman space* of \mathcal{D} . Show that the map

$$\Phi \colon \mathcal{B}(\mathcal{D}_2) \to \mathcal{B}(\mathcal{D}_1), \quad f \mapsto (\varphi^* f) \cdot \varphi', \quad \varphi^* f = f \circ \varphi$$

is unitary. Hint: For the real linear map $\lambda_z \colon \mathbb{C} \to \mathbb{C}, w \mapsto zw$, we have $\det_{\mathbb{R}}(\lambda_z) = |z|^2$.

Exercise 8.3 Let $G = N \rtimes_{\alpha} K$ be a semidirect product group and $\varphi \in \mathcal{P}(N)$ be a positive definite function on N which is K-invariant in the sense that

$$\varphi(k.n) = \varphi(n)$$
 for $k \in K, n \in N$.

Then

$$\psi \colon G \to \mathbb{C}, \quad \psi(n,k) := \varphi(n)$$

is a positive definite function on G. Hint: Show that the representation $(\pi_{\varphi}, \mathcal{H}_{\varphi})$ of N extends by $\pi_{\varphi}(k)f := f \circ \alpha(k)^{-1}$ to a unitary representation $(\pi_{\varphi}, \mathcal{H}_{\varphi})$ of G (Proposition 5.1.5) and consider $\pi_{\varphi} \in \mathcal{P}(G)$.

Exercise 8.4 Show that for a euclidean space V, the group O(V) of linear surjective isometries acts transitively on the sphere

$$\mathbb{S}(V) = \{ v \in V \colon ||v|| = 1 \}.$$

Hint: For a unit vector $v \in \mathbb{S}(V)$ consider the map

$$\sigma_v(x) := x - 2\langle x, v \rangle v.$$

Show that $\sigma_v \in O(V)$ and that for $x, y \in S(V)$ there exists a $v \in S$ with $\sigma_v(x) = y$.

Exercise 8.5 We consider the group $G := \operatorname{GL}_2(\mathbb{C})$ and the *complex projective line* (the *Riemann sphere*)

$$\mathbb{P}_1(\mathbb{C}) = \{ [v] := \mathbb{C}v \colon 0 \neq v \in \mathbb{C}^2 \}$$

of 1-dimensional linear subspaces of \mathbb{C}^2 . We write [x:y] for the line $\mathbb{C}\begin{pmatrix}x\\y\end{pmatrix}$. Show that:

- (a) The map $\mathbb{C} \to \mathbb{P}_1(\mathbb{C}), z \mapsto [z:1]$ is injective and its complement consists of the single point $\infty := [1:0]$ (the horizontal line). We thus identify $\mathbb{P}_1(\mathbb{C})$ with the one-point compactification $\widehat{\mathbb{C}}$ of \mathbb{C} . These are the so-called *homogeneous coordinates* on $\mathbb{P}_1(\mathbb{C})$.
- (b) The natural action of $\operatorname{GL}_2(\mathbb{C})$ on $\mathbb{P}_1(\mathbb{C})$ by g.[v] := [gv] is given in the coordinates of (b) by

$$g.z = \sigma_g(z) := \frac{az+b}{cz+d}$$
 for $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$.

(c) On \mathbb{C}^2 we consider the indefinite hermitian form

$$\beta(z,w) := z_1 \overline{w_1} - z_2 \overline{w_2} = w^* \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} z.$$

We define

$$U_{1,1}(\mathbb{C}) := \{ g \in \mathrm{GL}_2(\mathbb{C}) \colon (\forall z, w \in \mathbb{C}^2) \, \beta(gz, gw) = \beta(z, w) \}.$$

Show that $g \in U_{1,1}(\mathbb{C})$ is equivalent to

$$g^{-1} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} g^* \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

Show further that the above relation is equivalent to

$$\det g \in \mathbb{T}, \quad d = \overline{a} \det g \quad \text{and} \quad c = \overline{b} \det g.$$

In particular, we obtain $|a|^2 - |b|^2 = 1$.

- (d) The hermitian form β is negative definite on the subspace $[z_1 : z_2]$ if and only if $|z_1| < |z_2|$, i.e., $[z_1 : z_2] = [z : 1]$ for |z| < 1. Conclude that $g.z := \frac{az+b}{cz+d}$ defines an action of $U_{1,1}(\mathbb{C})$ on the open unit disc \mathcal{D} in \mathbb{C} .
- (e) Show that the action of the subgroup $SL_2(\mathbb{R})$ of $SL_2(\mathbb{C})$ on $\widehat{\mathbb{C}}$ preserves the circle $\widehat{\mathbb{R}} = \mathbb{R} \cup \{\infty\}$ and the upper half plane

$$\mathbb{C}_+ := \{ z \in \mathbb{C} \colon \operatorname{Im} z > 0 \}$$