8. Problem sheet on "Lie Groups and Their Representations"

Exercise 8.1 Let $C \subseteq V$ be a convex cone in the real vector space V and $\alpha \in V^{*}$ with $\alpha(c)>0$ for $0 \neq c \in C$. Show that

$$
S:=\{c \in C: \alpha(c)=1\}
$$

satisfies:
(a) $C=\mathbb{R}_{+} S$.
(b) $x \in S$ is an extreme point of S if and only if $\mathbb{R}_{+} x$ is an extremal ray of C.

Exercise 8.2 Let $\mathcal{D}_{1}, \mathcal{D}_{2} \subseteq \mathbb{C}$ be two open subsets and $\varphi: \mathcal{D}_{1} \rightarrow \mathcal{D}_{2}$ be a biholomorphic map, i.e., φ is bijective and φ^{-1} is also holomorphic. Let $\mathcal{B}(\mathcal{D}):=L^{2}(\mathcal{D}, d z) \cap \mathcal{O}(\mathcal{D})$ denote the Bergman space of \mathcal{D}. Show that the map

$$
\Phi: \mathcal{B}\left(\mathcal{D}_{2}\right) \rightarrow \mathcal{B}\left(\mathcal{D}_{1}\right), \quad f \mapsto\left(\varphi^{*} f\right) \cdot \varphi^{\prime}, \quad \varphi^{*} f=f \circ \varphi
$$

is unitary. Hint: For the real linear map $\lambda_{z}: \mathbb{C} \rightarrow \mathbb{C}, w \mapsto z w$, we have $\operatorname{det}_{\mathbb{R}}\left(\lambda_{z}\right)=|z|^{2}$.
Exercise 8.3 Let $G=N \rtimes_{\alpha} K$ be a semidirect product group and $\varphi \in \mathcal{P}(N)$ be a positive definite function on N which is K-invariant in the sense that

$$
\varphi(k . n)=\varphi(n) \quad \text { for } \quad k \in K, n \in N .
$$

Then

$$
\psi: G \rightarrow \mathbb{C}, \quad \psi(n, k):=\varphi(n)
$$

is a positive definite function on G. Hint: Show that the representation $\left(\pi_{\varphi}, \mathcal{H}_{\varphi}\right)$ of N extends by $\pi_{\varphi}(k) f:=f \circ \alpha(k)^{-1}$ to a unitary representation $\left(\pi_{\varphi}, \mathcal{H}_{\varphi}\right)$ of G (Proposition 5.1.5) and consider $\pi_{\varphi} \in \mathcal{P}(G)$.

Exercise 8.4 Show that for a euclidean space V, the group $\mathrm{O}(V)$ of linear surjective isometries acts transitively on the sphere

$$
\mathbb{S}(V)=\{v \in V:\|v\|=1\} .
$$

Hint: For a unit vector $v \in \mathbb{S}(V)$ consider the map

$$
\sigma_{v}(x):=x-2\langle x, v\rangle v .
$$

Show that $\sigma_{v} \in \mathrm{O}(V)$ and that for $x, y \in \mathbb{S}(V)$ there exists a $v \in \mathbb{S}$ with $\sigma_{v}(x)=y$.

Exercise 8.5 We consider the group $G:=\mathrm{GL}_{2}(\mathbb{C})$ and the complex projective line (the Riemann sphere)

$$
\mathbb{P}_{1}(\mathbb{C})=\left\{[v]:=\mathbb{C} v: 0 \neq v \in \mathbb{C}^{2}\right\}
$$

of 1-dimensional linear subspaces of \mathbb{C}^{2}. We write $[x: y]$ for the line $\mathbb{C}\binom{x}{y}$. Show that:
(a) The map $\mathbb{C} \rightarrow \mathbb{P}_{1}(\mathbb{C})$, $z \mapsto[z: 1]$ is injective and its complement consists of the single point $\infty:=[1: 0]$ (the horizontal line). We thus identify $\mathbb{P}_{1}(\mathbb{C})$ with the one-point compactification $\widehat{\mathbb{C}}$ of \mathbb{C}. These are the so-called homogeneous coordinates on $\mathbb{P}_{1}(\mathbb{C})$.
(b) The natural action of $\mathrm{GL}_{2}(\mathbb{C})$ on $\mathbb{P}_{1}(\mathbb{C})$ by $g .[v]:=[g v]$ is given in the coordinates of (b) by

$$
g . z=\sigma_{g}(z):=\frac{a z+b}{c z+d} \quad \text { for } \quad g=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) .
$$

(c) On \mathbb{C}^{2} we consider the indefinte hermitian form

$$
\beta(z, w):=z_{1} \overline{w_{1}}-z_{2} \overline{w_{2}}=w^{*}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) z .
$$

We define

$$
\mathrm{U}_{1,1}(\mathbb{C}):=\left\{g \in \mathrm{GL}_{2}(\mathbb{C}):\left(\forall z, w \in \mathbb{C}^{2}\right) \beta(g z, g w)=\beta(z, w)\right\}
$$

Show that $g \in \mathrm{U}_{1,1}(\mathbb{C})$ is equivalent to

$$
g^{-1}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) g^{*}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) .
$$

Show further that the above relation is equivalent to

$$
\operatorname{det} g \in \mathbb{T}, \quad d=\bar{a} \operatorname{det} g \quad \text { and } \quad c=\bar{b} \operatorname{det} g .
$$

In particular, we obtain $|a|^{2}-|b|^{2}=1$.
(d) The hermitian form β is negative definite on the subspace $\left[z_{1}: z_{2}\right]$ if and only if $\left|z_{1}\right|<\left|z_{2}\right|$, i.e., $\left[z_{1}: z_{2}\right]=[z: 1]$ for $|z|<1$. Conclude that $g . z:=\frac{a z+b}{c z+d}$ defines an action of $\mathrm{U}_{1,1}(\mathbb{C})$ on the open unit $\operatorname{disc} \mathcal{D}$ in \mathbb{C}.
(e) Show that the action of the subgroup $\mathrm{SL}_{2}(\mathbb{R})$ of $\mathrm{SL}_{2}(\mathbb{C})$ on $\widehat{\mathbb{C}}$ preserves the circle $\widehat{\mathbb{R}}=\mathbb{R} \cup\{\infty\}$ and the upper half plane

$$
\mathbb{C}_{+}:=\{z \in \mathbb{C}: \operatorname{Im} z>0\}
$$

