7. Problem sheet on "Lie Groups and Their Representations"

Exercise 6.1 We have defined the tensor product $\mathcal{H} \widehat{\otimes} \mathcal{K}$ of two Hilbert spaces as a space of functions on the product $\mathcal{H} \times \mathcal{K}$, defined by the kernel

$$
K\left(\left(x^{\prime}, y^{\prime}\right),(x, y)\right)=\left\langle x, x^{\prime}\right\rangle\left\langle y, y^{\prime}\right\rangle .
$$

Show that $\mathcal{H} \widehat{\otimes} \mathcal{K}$ consists of continuous maps which are biantilinear, i.e., antilinear in each argument.

Exercise 6.2 Let V be a real vector space and $\omega: V \times V \rightarrow \mathbb{R}$ be a bilinear map.
(a) Show that on $\mathbb{R} \times V$ we obtain a group structure by

$$
(t, v)(s, w):=(t+s+\omega(v, w), v+w) .
$$

This group is called the Heisenberg group $\operatorname{Heis}(V, \omega)$.
More generally, we obtain for any two abelian groups V and Z and any biadditive map $\omega: V \times V \rightarrow Z$ a group structure on $Z \times V$ by

$$
(t, v)(s, w):=(t+s+\omega(v, w), v+w)
$$

(b) Let \mathcal{H} be a complex Hilbert space. How do we have to choose V and ω to obtain an isomorphism $\operatorname{Heis}(V, \omega) \cong \operatorname{Heis}(\mathcal{H})$?
(c) Verify that $Z(\operatorname{Heis}(V, \omega))=\mathbb{R} \times \operatorname{rad}\left(\omega_{s}\right)$, where

$$
\omega_{s}(v, w):=\omega(v, w)-\omega(w, v) \quad \text { and } \quad \operatorname{rad}\left(\omega_{s}\right):=\left\{v \in V: \omega_{s}(v, V)=\{0\}\right\} .
$$

(d) Show that for $V=\mathbb{R}^{2}$ with $\omega(x, y)=x_{1} y_{2}$, the Heisenberg group $H(V, \omega)$ is isomorphic to the matrix group

$$
H:=\left\{\left(\begin{array}{ccc}
1 & x & z \\
0 & 1 & y \\
0 & 0 & 1
\end{array}\right): x, y, z \in \mathbb{R}\right\} .
$$

Exercise 6.3 Let $K: X \times X \rightarrow \mathbb{C}$ be a positive definite kernel and $\theta: X \rightarrow \mathbb{C}^{\times}$a function.
Determine necessary and sufficient conditions on θ such that

$$
\theta(x) K(x, y) \overline{\theta(y)}=K(x, y) \quad \text { for } \quad x, y \in X
$$

Hint: Consider the subset $X_{1}:=\{x \in X: K(x, x)>0\}$ and its complement X_{0} separately.
Exercise 6.4 Show that if (π, \mathcal{H}) is a factor representation of G and there exists an irreducible subrepresentation $\mathcal{H}_{1} \subseteq \mathcal{H}$, then (π, \mathcal{H}) is of type I. Hint: Consider the decomposition $\mathcal{H}=\mathcal{H}_{d} \oplus \mathcal{H}_{c}$ into continuous and discrete part and show that \mathcal{H}_{c} is trivial.

Exercise 6.5 Let $(V,\|\cdot\|)$ be a normed space,

$$
\mathbb{P}(V):=\{[v]:=\mathbb{R} v: 0 \neq v \in V\}
$$

be the space of one-dimensional subspace of V (the projective space). Show that
(a) $g \cdot[v]:=[g v]$ defines an action of $\mathrm{GL}(V)$ on $\mathbb{P}(V)$.
(b) $J: \mathrm{GL}(V) \times \mathbb{P}(V) \rightarrow \mathbb{R}^{\times}, J(g,[v]):=\frac{\|g v\|}{\|v\|}$ is a 1-cocycle with respect to this action.

Exercise 6.6 Let $G=\prod_{j \in J} G_{j}$ be a product of abelian topological groups and $p_{j}: G \rightarrow$ G_{j} be the projection maps. Show that the map

$$
S: \bigoplus_{j \in J} \widehat{G_{j}} \rightarrow \widehat{G}, \quad\left(\chi_{j}\right)_{j \in J} \mapsto \prod_{j \in J}\left(\chi_{j} \circ p_{j}\right)
$$

is an isomorphism of abelian groups.
Exercise 6.7 On \mathbb{R}^{n} we consider the vector space \mathcal{P}_{k} of all homogeneous polynomials of degree k :

$$
p(x)=\sum_{|\alpha|=k} c_{\alpha} x^{\alpha}, \quad c_{\alpha} \in \mathbb{R}, x^{\alpha}:=x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}}, \quad|\alpha|=\alpha_{1}+\cdots+\alpha_{n} .
$$

We associate to such a polynomial p a differential operator by

$$
p(\partial):=\sum_{|\alpha|=k} c_{\alpha} \partial^{\alpha}, \quad \partial^{\alpha}:=\partial_{1}^{\alpha_{1}} \cdots \partial_{n}^{\alpha_{n}}, \quad \partial_{i}:=\frac{\partial}{\partial x_{i}} .
$$

Show that the Fischer inner product

$$
\langle p, q\rangle:=(p(\partial) q)(0)
$$

defines on \mathcal{P}_{k} the structure of a real Hilbert space with continuous point evaluations. Show further that its kernel is given by

$$
K(x, y)=\frac{1}{k!}\langle x, y\rangle^{k}=\frac{1}{k!}\left(\sum_{j=1}^{n} x_{j} y_{j}\right)^{k} .
$$

Hint: Show that the monomials $p_{\alpha}(x)=x^{\alpha}$ form an orthogonal subset with $\left\langle p_{\alpha}, p_{\alpha}\right\rangle=\alpha$! and conclude with Theorem 3.1.3 that $K(x, y)=\sum_{|\alpha|=m} \frac{x^{\alpha} y^{\alpha}}{\alpha!}$.

Exercise 6.8 Let $K, Q \in \mathcal{P}(X, \mathbb{C})$ be positive definite kernels on X and $\theta: X \rightarrow \mathbb{C}^{\times}$. Show that

$$
m_{\theta}: \mathcal{H}_{K} \rightarrow \mathcal{H}_{Q}, \quad f \mapsto \theta f
$$

defines a unitary map if and only if

$$
Q(x, y)=\theta(x) K(x, y) \overline{\theta(y)} \quad \text { for } \quad x, y \in X
$$

