Fachbereich Mathematik AG Algebra, Geometrie, Funktionalanalysis Prof. Dr. K.-H. Neeb SS 2009

28. Mai 2009

6. Problem sheet on "Lie Groups and Their Representations"

Exercise 5.1 Let $(\mathcal{H}_j)_{j\in J}$ be a family of Hilbert spaces and $A_j \in B(\mathcal{H}_j)$. Suppose that $\sup_{j\in J} ||A_j|| < \infty$. Then $A(x_j) := (Ax_j)$ defines a bounded linear operator on $\widehat{\oplus}_{j\in J}\mathcal{H}_j$ with

$$||A|| = \sup_{j \in J} ||A_j||.$$

If, conversely, $\mathcal{H} = \widehat{\oplus}_{j \in J} \mathcal{H}_j$ is a Hilbert space direct sum and $A \in B(\mathcal{H})$ preserves each subspace \mathcal{H}_j , then the restrictions $A_j := A|_{\mathcal{H}_j}$ are bounded operators in $B(\mathcal{H}_j)$ satisfying $||A|| = \sup_{j \in J} ||A_j||$.

Exercise 5.2 Let (π, \mathcal{H}) be an irreducible representation of the involutive semigroup (S, *) and $\pi_n := \bigoplus_{i=1}^n \pi$ be the *n*-fold direct sum of π with itself on $\mathcal{H}^n = \bigoplus_{i=1}^n \mathcal{H}$. Show that

$$\pi_n(S)' \cong M_n(\mathbb{C}).$$

Hint: Write operators on \mathcal{H}^n as matrices with entries in $B(\mathcal{H})$ (cf. Exercise 1.3.6) and evaluate the commuting condition.

Exercise 5.3 Let V be a real topological vector space. Show that each continuous character $\chi: V \to \mathbb{T}$ is of the form $\chi(v) = e^{i\alpha(v)}$ for some continuous linear functional $\alpha \in V'$. Hint: Let $U \subseteq V$ be a circular 0-neighborhood (circular means that $\lambda U \subseteq U$ for $|\lambda| \leq 1$; such neighborhoods form a local basis in 0) with $\operatorname{Re} \chi(v) > 0$ for $v \in U + U$. Define a continuous (!) function

$$L: U \to] - \pi, \pi [\subseteq \mathbb{R} \quad \text{by} \quad e^{iL(u)} = \chi(u).$$

Observe that L(x+y) = L(x) + L(y) for $x, y \in U$ and use this to see that

$$\alpha(x) := \lim_{n \to \infty} nL\left(\frac{x}{n}\right)$$

is an additive extension of L to V. Now it remains to observe that continuous additive maps $V \to \mathbb{R}$ are linear functionals (prove \mathbb{Q} -linearity first).

Exercise 5.4 Show that if B is a compact subset of a Banach space E, then its closed convex hull $K := \overline{\operatorname{conv}(B)}$ is also compact. Hint: Since we are dealing with metric spaces, it suffices to show precompactness, i.e., that for each $\varepsilon > 0$, there exists a finite subset $F \subseteq K$ with $K \subseteq B_{\varepsilon}(F) := F + B_{\varepsilon}(0)$. Since B is compact, there exists a finite subset $F_B \subseteq B$ with $B \subseteq B_{\varepsilon}(F_B)$. Then $\operatorname{conv}(B) \subseteq \operatorname{conv}(F_B) + B_{\varepsilon}(0)$, and since $\operatorname{conv}(F_B)$ is compact (why?), $\operatorname{conv}(F_B) \subseteq B_{\varepsilon}(F)$ for a finite subset $F \subseteq \operatorname{conv}(F_B)$. This leads to $\operatorname{conv}(B) \subseteq F + B_{2\varepsilon}(0)$, which implies implies $K \subseteq F + B_{\leq 2\varepsilon}(0)$.

Exercise 5.5 Show that for each $n \in \mathbb{N}$ the unitary group

$$U_n(\mathbb{C}) = \{g \in \operatorname{GL}_n(\mathbb{C}) \colon \mathbf{1} = g^*g = gg^*\}$$

is compact.

Exercise 5.6 Let \mathcal{H} be a complex Hilbert space and $G \subseteq U(\mathcal{H})_s$ be a closed subgroup. Show that G is compact if and only if \mathcal{H} can be written as an orthogonal direct sum $\mathcal{H} = \bigoplus_{j \in J} \mathcal{H}_j$ of finite dimensional G-invariant subspaces. Hint: Use Tychonov's Theorem and Exercise 5.5 to see that for any family of finite dimensional Hilbert spaces $(\mathcal{H}_j)_{j \in J}$, the topological group $\prod_{j \in J} U(\mathcal{H}_j)_s$ is compact.

Exercise 5.7 Let X be a locally compact space, μ a positive Radon measure on X, \mathcal{H} a Hilbert space and $f \in C_c(X, \mathcal{H})$ be a compactly supported continuous function.

(a) Prove the existence of the \mathcal{H} -valued integral

$$I := \int_X f(x) \, d\mu(x),$$

i.e., the existence of an element $I \in \mathcal{H}$ with

$$\langle v, I \rangle = \int_X \langle v, f(x) \rangle \, d\mu(x) \quad \text{for} \quad v \in \mathcal{H}.$$

Hint: Verify that the right hand side of the above expression is defined and show that it defines a continuous linear functional on \mathcal{H} .

(b) Show that, if μ is a probability measure, then

$$I \in \overline{\operatorname{conv}(f(X))}.$$

Hint: Use the Hahn–Banach Separation Theorem.