5. Problem sheet on "Lie Groups and Their Representations"

Exercise 5.1 Let C be a convex cone in a real vector space. Show that for any family $\left(F_{i}\right)_{i \in I}$ of faces of C, the intersection $\bigcap_{i \in I} F_{i}$ also is a face.

Exercise 5.2 Let C be a convex cone in a real vector space and $f: V \rightarrow \mathbb{R}$ a linear functional with $f(C) \subseteq \mathbb{R}_{+}$. Show that $\operatorname{ker} f \cap C$ is a face of C.

Exercise 5.3 Let C be a convex cone in a topological vector space V. Show that every proper face F of C is contained in the boundary ∂C. Hint: Show that the face generated by any $x \in C^{0}$ is all of C by showing that $C \subseteq \bigcup_{\lambda>0}(\lambda x-C)$.

Exercise 5.4 On the interval $[0,1] \subseteq \mathbb{R}$, we consider $\mathcal{H}=L^{2}([0,1], d x)$ and the map

$$
\gamma:[0,1] \rightarrow \mathcal{H}, \quad \gamma(x):=\chi_{[0, x]} .
$$

Show that:
(a) $K(x, y):=\langle\gamma(y), \gamma(x)\rangle=\min (x, y)$.
(b) $\operatorname{im}(\gamma)$ is total in \mathcal{H}. Hint: The subspace spanned by $\operatorname{im}(\gamma)$ contains all Riemannian step functions (those corresponding to finite partitions of $[0,1]$ into subintervals). From this one derives that its closure contains all continuous functions which span a dense subspace.
(c) The reproducing kernel space \mathcal{H}_{K} consists of continuous functions and the corresponding realization map is

$$
\varphi_{\gamma}: L^{2}([0,1]) \rightarrow \mathcal{H}_{K}, \quad \varphi_{\gamma}(f)(x):=\int_{0}^{x} f(t) d t
$$

The space \mathcal{H}_{K} is the Sobolev space of all continuous functions on $[0,1]$, vanishing in 0 whose derivatives are L^{2}-functions.

Exercise 5.5 Let \mathcal{A} be a Banach algebra and $\chi: \mathcal{A} \rightarrow \mathbb{C}$ be an algebra homomorphism. Show that:
(a) χ extends to the unital Banach algebra $\mathcal{A}_{+}:=\mathcal{A} \times \mathbb{C}$ with the multiplication

$$
(a, t)\left(a^{\prime}, t^{\prime}\right):=\left(a a^{\prime}+t a^{\prime}+t^{\prime} a, t t^{\prime}\right)
$$

(cf. Exercise 1.1.11).
(b) If \mathcal{A} is unital and $\chi \neq 0$, then

$$
\chi(\mathbf{1})=1 \quad \text { and } \quad \chi\left(\mathcal{A}^{\times}\right) \subseteq \mathbb{C}^{\times}
$$

Conclude further that $\chi\left(B_{1}(\mathbf{1})\right) \subseteq \mathbb{C}^{\times}$and derive that χ is continuous with $\|\chi\| \leq 1$.

Exercise 5.6 (Concrete commutants) Let (X, \mathfrak{S}, μ) be a finite measure space, $\mathcal{H}:=$ $L^{2}(X, \mu)$ the corresponding Hilbert space and

$$
\pi: L^{\infty}(X, \mu) \rightarrow B\left(L^{2}(X, \mu)\right), \quad \pi(f) g:=f g
$$

be the homomorphism from Lemma 2.1.5. Show that:
(1) $1 \in L^{2}(X, \mu)$ is a cyclic vector for π, i.e., not contained in a proper closed subspace invariant under $L^{\infty}(X, \mu)$.
(2) If $B \in \pi\left(L^{\infty}(X, \mu)\right)^{\prime}$, then
(a) $B(f)=B(1) f$ for $f \in L^{2}(X, \mu)$. Hint: Verify this relation first for bounded functions f.
(b) $B(1)$ is bounded. Hint: Apply B to the characteristic function of the set $E_{n}:=$ $\{x \in X: n \leq|B(1)|(x) \leq n+1\}$.
(c) $B=\pi(B(1))$.
(5) $\pi\left(L^{\infty}(X, \mu)\right)=\pi\left(L^{\infty}(X, \mu)\right)^{\prime}$ is its own commutant, hence in particular a von Neumann algebra.

Exercise 5.7 Suppose that Y is a compact space $y_{0} \in Y$ and $X:=Y \backslash\left\{y_{0}\right\}$. Show that the restriction map yields an isometric isomorphism of C^{*}-algebras:

$$
r: C_{*}(Y, \mathbb{C}):=\left\{f \in C(Y, \mathbb{C}): f\left(y_{0}\right)=0\right\} \rightarrow C_{0}(X, \mathbb{C})
$$

Exercise 5.8 Let \mathcal{A} be a C^{*}-algebra. Show that:
(i) If $a=a^{*} \in \mathcal{A}$ is a hermitian element, then $\left\|a^{n}\right\|=\|a\|^{n}$ holds for each $n \in \mathbb{N}$. Hint: Consider the commutative C^{*}-subalgebra generated by a.
(ii) If \mathcal{B} is a Banach-*-algebra and $\alpha: \mathcal{B} \rightarrow \mathcal{A}$ a continuous morphism of Banach-*-algebras, then $\|\alpha\| \leq 1$. Hint: Let $C:=\|\alpha\|$ and derive with (i) for $b \in \mathcal{B}$ the relation

$$
\|\alpha(b)\|^{2 n}=\left\|\alpha\left(b b^{*}\right)\right\|^{n}=\left\|\alpha\left(\left(b b^{*}\right)^{n}\right)\right\| \leq C\left\|\left(b b^{*}\right)^{n}\right\| \leq C\|b\|^{2 n} .
$$

Finally, use that $C^{1 / n} \rightarrow 1$.
Exercise 5.9 Show that on $X:=] 0, \infty\left[\right.$ the kernel $K(x, y):=\frac{1}{x+y}$ is positive definite. Hint: Consider the elements $e_{\lambda}(x):=e^{-\lambda x}$ in $L^{2}\left(\mathbb{R}_{+}, d x\right)$.

