Fachbereich Mathematik AG Algebra, Geometrie, Funktionalanalysis Prof. Dr. K.-H. Neeb SS 2009

14. Mai 2009

5. Problem sheet on "Lie Groups and Their Representations"

Exercise 5.1 Let C be a convex cone in a real vector space. Show that for any family $(F_i)_{i \in I}$ of faces of C, the intersection $\bigcap_{i \in I} F_i$ also is a face.

Exercise 5.2 Let C be a convex cone in a real vector space and $f: V \to \mathbb{R}$ a linear functional with $f(C) \subseteq \mathbb{R}_+$. Show that ker $f \cap C$ is a face of C.

Exercise 5.3 Let C be a convex cone in a topological vector space V. Show that every proper face F of C is contained in the boundary ∂C . Hint: Show that the face generated by any $x \in C^0$ is all of C by showing that $C \subseteq \bigcup_{\lambda>0} (\lambda x - C)$.

Exercise 5.4 On the interval $[0,1] \subseteq \mathbb{R}$, we consider $\mathcal{H} = L^2([0,1], dx)$ and the map

$$\gamma \colon [0,1] \to \mathcal{H}, \quad \gamma(x) := \chi_{[0,x]}.$$

Show that:

- (a) $K(x,y) := \langle \gamma(y), \gamma(x) \rangle = \min(x,y).$
- (b) $\operatorname{im}(\gamma)$ is total in \mathcal{H} . Hint: The subspace spanned by $\operatorname{im}(\gamma)$ contains all Riemannian step functions (those corresponding to finite partitions of [0, 1] into subintervals). From this one derives that its closure contains all continuous functions which span a dense subspace.
- (c) The reproducing kernel space \mathcal{H}_K consists of continuous functions and the corresponding realization map is

$$\varphi_{\gamma} \colon L^2([0,1]) \to \mathcal{H}_K, \quad \varphi_{\gamma}(f)(x) := \int_0^x f(t) \, dt.$$

The space \mathcal{H}_K is the Sobolev space of all continuous functions on [0, 1], vanishing in 0 whose derivatives are L^2 -functions.

Exercise 5.5 Let \mathcal{A} be a Banach algebra and $\chi \colon \mathcal{A} \to \mathbb{C}$ be an algebra homomorphism. Show that:

(a) χ extends to the unital Banach algebra $\mathcal{A}_+ := \mathcal{A} \times \mathbb{C}$ with the multiplication

$$(a,t)(a',t') := (aa' + ta' + t'a,tt')$$

(cf. Exercise 1.1.11).

(b) If \mathcal{A} is unital and $\chi \neq 0$, then

$$\chi(\mathbf{1}) = 1$$
 and $\chi(\mathcal{A}^{\times}) \subseteq \mathbb{C}^{\times}$.

Conclude further that $\chi(B_1(\mathbf{1})) \subseteq \mathbb{C}^{\times}$ and derive that χ is continuous with $\|\chi\| \leq 1$.

Exercise 5.6 (Concrete commutants) Let (X, \mathfrak{S}, μ) be a finite measure space, $\mathcal{H} := L^2(X, \mu)$ the corresponding Hilbert space and

$$\pi \colon L^{\infty}(X,\mu) \to B(L^2(X,\mu)), \quad \pi(f)g := fg$$

be the homomorphism from Lemma 2.1.5. Show that:

- (1) $1 \in L^2(X,\mu)$ is a cyclic vector for π , i.e., not contained in a proper closed subspace invariant under $L^{\infty}(X,\mu)$.
- (2) If $B \in \pi(L^{\infty}(X,\mu))'$, then
 - (a) B(f) = B(1)f for $f \in L^2(X, \mu)$. Hint: Verify this relation first for bounded functions f.
 - (b) B(1) is bounded. Hint: Apply B to the characteristic function of the set $E_n := \{x \in X : n \le |B(1)|(x) \le n+1\}.$
 - (c) $B = \pi(B(1))$.
- (5) $\pi(L^{\infty}(X,\mu)) = \pi(L^{\infty}(X,\mu))'$ is its own commutant, hence in particular a von Neumann algebra.

Exercise 5.7 Suppose that Y is a compact space $y_0 \in Y$ and $X := Y \setminus \{y_0\}$. Show that the restriction map yields an isometric isomorphism of C^* -algebras:

$$r: C_*(Y, \mathbb{C}) := \{ f \in C(Y, \mathbb{C}) : f(y_0) = 0 \} \to C_0(X, \mathbb{C}).$$

Exercise 5.8 Let \mathcal{A} be a C^* -algebra. Show that:

- (i) If $a = a^* \in \mathcal{A}$ is a hermitian element, then $||a^n|| = ||a||^n$ holds for each $n \in \mathbb{N}$. Hint: Consider the commutative C^* -subalgebra generated by a.
- (ii) If \mathcal{B} is a Banach-*-algebra and $\alpha \colon \mathcal{B} \to \mathcal{A}$ a continuous morphism of Banach-*-algebras, then $\|\alpha\| \leq 1$. Hint: Let $C := \|\alpha\|$ and derive with (i) for $b \in \mathcal{B}$ the relation

$$\|\alpha(b)\|^{2n} = \|\alpha(bb^*)\|^n = \|\alpha((bb^*)^n)\| \le C\|(bb^*)^n\| \le C\|b\|^{2n}.$$

Finally, use that $C^{1/n} \to 1$.

Exercise 5.9 Show that on $X :=]0, \infty[$ the kernel $K(x, y) := \frac{1}{x+y}$ is positive definite. Hint: Consider the elements $e_{\lambda}(x) := e^{-\lambda x}$ in $L^2(\mathbb{R}_+, dx)$.