Fachbereich Mathematik AG Algebra, Geometrie, Funktionalanalysis Prof. Dr. K.-H. Neeb SS 2009

23. April 2009

2. Problem sheet on "Lie Groups and Their Representations"

Exercise 2.1 Let \mathcal{H} be a Hilbert space and $U(\mathcal{H})_s$ its unitary group, endowed with the strong (=weak) operator topology. Show that the action map

$$\sigma: \mathrm{U}(\mathcal{H})_s \times \mathcal{H} \to \mathcal{H}, \quad (g, v) \mapsto gv$$

is continuous. Conclude that each continuous unitary representation (π, \mathcal{H}) of a topological group G defines a continuous action of G on \mathcal{H} by $g.v := \pi(g)v$.

Exercise 2.2 Let $(a_n)_{n \in \mathbb{N}}$ be asequence of real numbers. Show that we obtain a continuous unitary representation of $G = (\mathbb{R}, +)$ on $\mathcal{H} = \ell^2(\mathbb{N}, \mathbb{C})$ by

$$\pi(t)x = (e^{ita_1}x_1, e^{ita_2}x_2, \ldots)$$

Show further that, if the sequence (a_n) is unbounded, then π is not norm continuous. Is it norm continuous if the sequence (a_n) is bounded?

Exercise 2.3 Let (π, \mathcal{H}) be a representation of an involutive semigroup (S, *). Show that:

- (a) (π, \mathcal{H}) is non-degenerate if and only if $\pi(S)v \subseteq \{0\}$ implies v = 0.
- (b) Show that (π, \mathcal{H}) is an orthogonal direct sum of a non-degenerate representation and a zero representation (ζ, \mathcal{K}) , i.e., $\zeta(S) = \{0\}$.

Exercise 2.4 Let (π, \mathcal{H}) be a representation of the involutive semigroup (G, η_G) , where G is a group. Show that:

- (a) $\mathcal{H} = \mathcal{H}_0 \oplus \mathcal{H}_1$, where $\mathcal{H}_j = \ker(\eta(\mathbf{1}) j\mathbf{1})$, is an orthogonal direct sum.
- (b) (π, \mathcal{H}) is non-degenerate if and only if $\pi(\mathbf{1}) = \mathbf{1}$.

Exercise 2.5 Let (π, \mathcal{H}) and (ρ, \mathcal{K}) be unitary representations of G. Show that the space $B_G(\mathcal{K}, \mathcal{H})$ of all intertwining operators is a closed subspace of the Banach space $B(\mathcal{K}, \mathcal{H})$

Exercise 2.6 Let $b: V \times V \to \mathbb{C}$ be a hermitian form on the complex Vector space V, i.e., b is linear in the first argument and satisfies $b(y, x) = \overline{b(x, y)}$. Show that b satisfies the *polarization identity* which permits the recover all values of b from those on the diagonal:

$$b(x,y) = \frac{1}{4} \sum_{k=0}^{3} i^{k} b(x+i^{k}y, x+i^{k}y).$$

Exercise 2.7 Show that for each summable family $(x_j)_{j \in J}$ in the Banach space X, the set

$$J^{\times} = \{ j \in J \colon x_j \neq 0 \}$$

is countable, and that, if $J^{\times} = \{j_n : n \in \mathbb{N}\}$ is an enumeration of J^{\times} , then $\sum_{j \in J} x_j = \sum_{n=1}^{\infty} x_{j_n}$. Hint: Show that each set $J_n := \{j \in J : ||x||_n > \frac{1}{n}\}$ is finite.

Exercise 2.8 Show that for an orthogonal family $(x_j)_{j \in J}$ in the Hilbert space \mathcal{H} , the following are equivalent:

(i) $(x_j)_{j \in J}$ is summable.

(ii) $(||x_j||^2)_{j \in J}$ is summable in \mathbb{R} .

Show further that, if this is the case, then $\|\sum_{j\in J} x_j\|^2 = \sum_{j\in J} \|x_j\|^2$ and the set $\{j\in J: x_j\neq 0\}$ is countable.

Exercise 2.9 Let $(\mathcal{H}_j)_{j\in J}$ be an orthogonal family of closed subspaces of the Hilbert space \mathcal{H} . Show that for each $x = (x_j)_{j\in J} \in \bigoplus \mathcal{H}_j$, the sum $\Phi(x) := \sum_{j\in J} x_j$ converges in \mathcal{H} and that $\Phi: \bigoplus_{j\in J} \mathcal{H}_j \to \mathcal{H}, (x_j)_{j\in J} \mapsto \sum_{j\in J} x_j$ defines an isometric embedding (cf. Exercise 2.8).

Exercise 2.10 (Endomorphisms as matrices) Let V be a vector space which is the direct sum

$$V = V_1 \oplus \cdots \oplus V_n$$

of the subspaces V_i , i = 1, ..., n. Accordingly, we write $v \in V$ as a sum $v = v_1 + \cdots + v_n$ with $v_i \in V$. To each $\varphi \in \text{End}(V)$ we associate the map $\varphi_{ij} \in \text{Hom}(V_j, V_i)$, defined by $\varphi_{ij}(v) = \varphi(v)_i$ for $v \in V_j$. Show that

- (a) $\varphi(v)_i = \sum_{j=1}^n \varphi_{ij}(v_j)$ for $v = \sum_{j=1}^n v_j \in V$.
- (b) The map

$$\Gamma: \bigoplus_{i,j=1}^{n} \operatorname{Hom}(V_{j}, V_{i}) \to \operatorname{End}(V), \quad \Gamma((\psi_{ij}))(v) := \sum_{i,j=1}^{n} \psi_{ij}(v_{j})$$

is a linear isomorphism. In this sense we may identify endomorphisms of V with $(n \times n)$ -matrices with entries in Hom (V_j, V_i) in position (i, j).

(c) If V is a Banach space and each V_i is a closed subspace, then the map

$$S: V_1 \times \cdots \times V_n \to V, \quad (v_1, \dots, v_n) \mapsto \sum_{i=1}^n v_i$$

is a homeomorphism. Moreover, a linear endomorphism $\varphi: V \to V$ is continuous if and only if each φ_{ij} is continuous. Hint: For the first assertion use the Open Mapping Theorem. Conclude that if $\iota_i: V_i \to V$ denotes the inclusion map and $p_j: V \to V_j$ the projection map, then both are continuous. Then use that $\varphi_{ij} = p_i \circ \varphi \circ \eta_j$.

Exercise 2.11 Let G be a group. Show that:

- (a) Each unitary representation (π, \mathcal{H}) of G is equivalent to a representation $(\rho, \ell^2(J, \mathbb{C}))$ for some set J. Therefore it makes sense to speak of the **set** of equivalence classes of representations with a fixed Hilbert dimension |J|.
- (b) Two unitary representations $\pi_j: G \to U(\mathcal{H}), j = 1, 2$, are equivalent if and only if there exists a unitary operator $U \in U(\mathcal{H})$ with

$$\pi_2(g) = U\pi_1(g)U^{-1}$$
 for each $g \in G$.

Therefore the set of equivalence classes of unitary representations of G on \mathcal{H} is the set of orbits of the action of $U(\mathcal{H})$ on the set $Hom(G, U(\mathcal{H}))$ for the action $(U * \pi)(g) := U\pi(g)U^{-1}$.