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2. Problem sheet on “Lie Groups and Their Representations”

Exercise 2.1 Let H be a Hilbert space and U(H)s its unitary group, endowed with the
strong (=weak) operator topology. Show that the action map

σ: U(H)s ×H → H, (g, v) 7→ gv

is continuous. Conclude that each continuous unitary representation (π,H) of a topological
group G defines a continuous action of G on H by g.v := π(g)v.

Exercise 2.2 Let (an)n∈N be asequence of real numbers. Show that we obtain a continuous
unitary representation of G = (R,+) on H = `2(N,C) by

π(t)x = (eita1x1, e
ita2x2, . . .).

Show further that, if the sequence (an) is unbounded, then π is not norm continuous. Is it
norm continuous if the sequence (an) is bounded?

Exercise 2.3 Let (π,H) be a representation of an involutive semigroup (S, ∗). Show that:

(a) (π,H) is non-degenerate if and only if π(S)v ⊆ {0} implies v = 0.

(b) Show that (π,H) is an orthogonal direct sum of a non-degenerate representation and
a zero representation (ζ,K), i.e., ζ(S) = {0}.

Exercise 2.4 Let (π,H) be a representation of the involutive semigroup (G, ηG), where G
is a group. Show that:

(a) H = H0 ⊕H1, where Hj = ker(η(1)− j1), is an orthogonal direct sum.

(b) (π,H) is non-degenerate if and only if π(1) = 1.

Exercise 2.5 Let (π,H) and (ρ,K) be unitary representations of G. Show that the space
BG(K,H) of all intertwining operators is a closed subspace of the Banach space B(K,H)

Exercise 2.6 Let b:V ×V → C be a hermitian form on the complex Vector space V , i.e.,
b is linear in the first argument and satisfies b(y, x) = b(x, y). Show that b satisfies the
polarization identity which permits the recover all values of b from those on the diagonal:

b(x, y) =
1

4

3∑
k=0

ikb(x+ iky, x+ iky).

Exercise 2.7 Show that for each summable family (xj)j∈J in the Banach space X, the set

J× = {j ∈ J :xj 6= 0}

is countable, and that, if J× = {jn:n ∈ N} is an enumeration of J×, then
∑

j∈J xj =∑∞
n=1 xjn . Hint: Show that each set Jn := {j ∈ J : ‖x‖n >

1
n
} is finite.
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Exercise 2.8 Show that for an orthogonal family (xj)j∈J in the Hilbert space H, the
following are equivalent:

(i) (xj)j∈J is summable.

(ii) (‖xj‖2)j∈J is summable in R.

Show further that, if this is the case, then ‖
∑

j∈J xj‖2 =
∑

j∈J ‖xj‖2 and the set
{j ∈ J :xj 6= 0} is countable.

Exercise 2.9 Let (Hj)j∈J be an orthogonal family of closed subspaces of the Hilbert space

H. Show that for each x = (xj)j∈J ∈
⊕̂
Hj, the sum Φ(x) :=

∑
j∈J xj converges in H and

that Φ:
⊕̂

j∈JHj → H, (xj)j∈J 7→
∑

j∈J xj defines an isometric embedding (cf. Exercise 2.8).

Exercise 2.10 (Endomorphisms as matrices) Let V be a vector space which is the direct
sum

V = V1 ⊕ · · · ⊕ Vn

of the subspaces Vi, i = 1, . . . , n. Accordingly, we write v ∈ V as a sum v = v1 + · · · + vn

with vi ∈ V . To each ϕ ∈ End(V ) we associate the map ϕij ∈ Hom(Vj, Vi), defined by
ϕij(v) = ϕ(v)i for v ∈ Vj. Show that

(a) ϕ(v)i =
∑n

j=1 ϕij(vj) for v =
∑n

j=1 vj ∈ V .

(b) The map

Γ:
n⊕

i,j=1

Hom(Vj, Vi) → End(V ), Γ((ψij))(v) :=
n∑

i,j=1

ψij(vj)

is a linear isomorphism. In this sense we may identify endomorphisms of V with
(n× n)-matrices with entries in Hom(Vj, Vi) in position (i, j).

(c) If V is a Banach space and each Vi is a closed subspace, then the map

S:V1 × · · · × Vn → V, (v1, . . . , vn) 7→
n∑

i=1

vi

is a homeomorphism. Moreover, a linear endomorphism ϕ:V → V is continuous if
and only if each ϕij is continuous. Hint: For the first assertion use the Open Mapping
Theorem. Conclude that if ιi:Vi → V denotes the inclusion map and pj:V → Vj the
projection map, then both are continuous. Then use that ϕij = pi ◦ ϕ ◦ ηj.

Exercise 2.11 Let G be a group. Show that:

(a) Each unitary representation (π,H) of G is equivalent to a representation
(ρ, `2(J,C)) for some set J . Therefore it makes sense to speak of the set of equi-
valence classes of representations with a fixed Hilbert dimension |J |.

(b) Two unitary representations πj:G→ U(H), j = 1, 2, are equivalent if and only if there
exists a unitary operator U ∈ U(H) with

π2(g) = Uπ1(g)U
−1 for each g ∈ G.

Therefore the set of equivalence classes of unitary representations of G on H is the set
of orbits of the action of U(H) on the set Hom(G,U(H)) for the action (U ∗π)(g) :=
Uπ(g)U−1.
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