2. Problem sheet on "Lie Groups and Their Representations"

Exercise 2.1 Let \mathcal{H} be a Hilbert space and $\mathrm{U}(\mathcal{H})_{s}$ its unitary group, endowed with the strong (=weak) operator topology. Show that the action map

$$
\sigma: \mathrm{U}(\mathcal{H})_{s} \times \mathcal{H} \rightarrow \mathcal{H}, \quad(g, v) \mapsto g v
$$

is continuous. Conclude that each continuous unitary representation (π, \mathcal{H}) of a topological group G defines a continuous action of G on \mathcal{H} by $g . v:=\pi(g) v$.

Exercise 2.2 Let $\left(a_{n}\right)_{n \in \mathbb{N}}$ be asequence of real numbers. Show that we obtain a continuous unitary representation of $G=(\mathbb{R},+)$ on $\mathcal{H}=\ell^{2}(\mathbb{N}, \mathbb{C})$ by

$$
\pi(t) x=\left(e^{i t a_{1}} x_{1}, e^{i t a_{2}} x_{2}, \ldots\right)
$$

Show further that, if the sequence $\left(a_{n}\right)$ is unbounded, then π is not norm continuous. Is it norm continuous if the sequence $\left(a_{n}\right)$ is bounded?

Exercise 2.3 Let (π, \mathcal{H}) be a representation of an involutive semigroup $(S, *)$. Show that:
(a) (π, \mathcal{H}) is non-degenerate if and only if $\pi(S) v \subseteq\{0\}$ implies $v=0$.
(b) Show that (π, \mathcal{H}) is an orthogonal direct sum of a non-degenerate representation and a zero representation (ζ, \mathcal{K}), i.e., $\zeta(S)=\{0\}$.

Exercise 2.4 Let (π, \mathcal{H}) be a representation of the involutive semigroup $\left(G, \eta_{G}\right)$, where G is a group. Show that:
(a) $\mathcal{H}=\mathcal{H}_{0} \oplus \mathcal{H}_{1}$, where $\mathcal{H}_{j}=\operatorname{ker}(\eta(\mathbf{1})-j \mathbf{1})$, is an orthogonal direct sum.
(b) (π, \mathcal{H}) is non-degenerate if and only if $\pi(\mathbf{1})=\mathbf{1}$.

Exercise 2.5 Let (π, \mathcal{H}) and (ρ, \mathcal{K}) be unitary representations of G. Show that the space $B_{G}(\mathcal{K}, \mathcal{H})$ of all intertwining operators is a closed subspace of the Banach space $B(\mathcal{K}, \mathcal{H})$

Exercise 2.6 Let $b: V \times V \rightarrow \mathbb{C}$ be a hermitian form on the complex Vector space V, i.e., b is linear in the first argument and satisfies $b(y, x)=\overline{b(x, y)}$. Show that b satisfies the polarization identity which permits the recover all values of b from those on the diagonal:

$$
b(x, y)=\frac{1}{4} \sum_{k=0}^{3} i^{k} b\left(x+i^{k} y, x+i^{k} y\right)
$$

Exercise 2.7 Show that for each summable family $\left(x_{j}\right)_{j \in J}$ in the Banach space X, the set

$$
J^{\times}=\left\{j \in J: x_{j} \neq 0\right\}
$$

is countable, and that, if $J^{\times}=\left\{j_{n}: n \in \mathbb{N}\right\}$ is an enumeration of J^{\times}, then $\sum_{j \in J} x_{j}=$ $\sum_{n=1}^{\infty} x_{j_{n}}$. Hint: Show that each set $J_{n}:=\left\{j \in J:\|x\|_{n}>\frac{1}{n}\right\}$ is finite.

Exercise 2.8 Show that for an orthogonal family $\left(x_{j}\right)_{j \in J}$ in the Hilbert space \mathcal{H}, the following are equivalent:
(i) $\left(x_{j}\right)_{j \in J}$ is summable.
(ii) $\left(\left\|x_{j}\right\|^{2}\right)_{j \in J}$ is summable in \mathbb{R}.

Show further that, if this is the case, then $\left\|\sum_{j \in J} x_{j}\right\|^{2}=\sum_{j \in J}\left\|x_{j}\right\|^{2}$ and the set $\left\{j \in J: x_{j} \neq 0\right\}$ is countable.

Exercise 2.9 Let $\left(\mathcal{H}_{j}\right)_{j \in J}$ be an orthogonal family of closed subspaces of the Hilbert space \mathcal{H}. Show that for each $x=\left(x_{j}\right)_{j \in J} \in \widehat{\bigoplus} \mathcal{H}_{j}$, the sum $\Phi(x):=\sum_{j \in J} x_{j}$ converges in \mathcal{H} and that $\Phi: \widehat{\bigoplus}_{j \in J} \mathcal{H}_{j} \rightarrow \mathcal{H},\left(x_{j}\right)_{j \in J} \mapsto \sum_{j \in J} x_{j}$ defines an isometric embedding (cf. Exercise 2.8).

Exercise 2.10 (Endomorphisms as matrices) Let V be a vector space which is the direct sum

$$
V=V_{1} \oplus \cdots \oplus V_{n}
$$

of the subspaces $V_{i}, i=1, \ldots, n$. Accordingly, we write $v \in V$ as a sum $v=v_{1}+\cdots+v_{n}$ with $v_{i} \in V$. To each $\varphi \in \operatorname{End}(V)$ we associate the map $\varphi_{i j} \in \operatorname{Hom}\left(V_{j}, V_{i}\right)$, defined by $\varphi_{i j}(v)=\varphi(v)_{i}$ for $v \in V_{j}$. Show that
(a) $\varphi(v)_{i}=\sum_{j=1}^{n} \varphi_{i j}\left(v_{j}\right)$ for $v=\sum_{j=1}^{n} v_{j} \in V$.
(b) The map

$$
\Gamma: \bigoplus_{i, j=1}^{n} \operatorname{Hom}\left(V_{j}, V_{i}\right) \rightarrow \operatorname{End}(V), \quad \Gamma\left(\left(\psi_{i j}\right)\right)(v):=\sum_{i, j=1}^{n} \psi_{i j}\left(v_{j}\right)
$$

is a linear isomorphism. In this sense we may identify endomorphisms of V with $(n \times n)$-matrices with entries in $\operatorname{Hom}\left(V_{j}, V_{i}\right)$ in position (i, j).
(c) If V is a Banach space and each V_{i} is a closed subspace, then the map

$$
S: V_{1} \times \cdots \times V_{n} \rightarrow V, \quad\left(v_{1}, \ldots, v_{n}\right) \mapsto \sum_{i=1}^{n} v_{i}
$$

is a homeomorphism. Moreover, a linear endomorphism $\varphi: V \rightarrow V$ is continuous if and only if each $\varphi_{i j}$ is continuous. Hint: For the first assertion use the Open Mapping Theorem. Conclude that if $\iota_{i}: V_{i} \rightarrow V$ denotes the inclusion map and $p_{j}: V \rightarrow V_{j}$ the projection map, then both are continuous. Then use that $\varphi_{i j}=p_{i} \circ \varphi \circ \eta_{j}$.

Exercise 2.11 Let G be a group. Show that:
(a) Each unitary representation (π, \mathcal{H}) of G is equivalent to a representation $\left(\rho, \ell^{2}(J, \mathbb{C})\right)$ for some set J. Therefore it makes sense to speak of the set of equivalence classes of representations with a fixed Hilbert dimension $|J|$.
(b) Two unitary representations $\pi_{j}: G \rightarrow \mathrm{U}(\mathcal{H}), j=1,2$, are equivalent if and only if there exists a unitary operator $U \in \mathrm{U}(\mathcal{H})$ with

$$
\pi_{2}(g)=U \pi_{1}(g) U^{-1} \quad \text { for each } \quad g \in G .
$$

Therefore the set of equivalence classes of unitary representations of G on \mathcal{H} is the set of orbits of the action of $\mathrm{U}(\mathcal{H})$ on the set $\operatorname{Hom}(G, \mathrm{U}(\mathcal{H}))$ for the action $(U * \pi)(g):=$ $U \pi(g) U^{-1}$.

