12. Problem sheet on "Lie Groups and Their Representations"

Exercise 12.1 Show that for $X=-X^{*} \in M_{n}(\mathbb{C})$ the matrix e^{X} is unitary and that the exponential function

$$
\exp : \operatorname{Aherm}_{n}(\mathbb{C}):=\left\{X \in M_{n}(\mathbb{C}): X^{*}=-X\right\} \rightarrow \mathrm{U}_{n}(\mathbb{C}), \quad X \mapsto e^{X}
$$

is surjective.
Exercise 12.2 Show that for $X^{\top}=-X \in M_{n}(\mathbb{R})$ the matrix e^{X} is orthogonal and that the exponential function

$$
\exp : \operatorname{Skew}_{n}(\mathbb{R}):=\left\{X \in M_{n}(\mathbb{R}): X^{\top}=-X\right\} \rightarrow \mathrm{O}_{n}(\mathbb{R})
$$

is not surjective. Can you determine which orthogonal matrices are contained in the image? Can you interprete the result geometrically in terns of the geometry of the flow $\mathbb{R} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n},(t, v) \mapsto e^{t X} v$.

Exercise 12.3 Show that for $\mathcal{A}:=C\left(\mathbb{S}^{1}\right)$ the exponential function

$$
\exp : \operatorname{Aherm}(\mathcal{A}):=\left\{a \in \mathcal{A}: a^{*}=-a\right\} \rightarrow \mathrm{U}(\mathcal{A})=C\left(\mathbb{S}^{1}, \mathbb{T}\right), \quad a \mapsto e^{a}
$$

is not surjective. It requires some covering theory to determine which elements $f \in C\left(\mathbb{S}^{1}, \mathbb{T}\right)$ lie in its image. Hint: Use the winding number with respect to 0 .

Exercise 12.4 Show that for any measure space (X, \mathfrak{S}) and the C^{*}-algebra $\mathcal{A}:=L^{\infty}(X, \mathfrak{S})$, the exponential function

$$
\exp : \operatorname{Aherm}(\mathcal{A}) \rightarrow \mathrm{U}(\mathcal{A}), \quad a \mapsto e^{a}
$$

is surjective.
Exercise 12.5 Show that for every von Neumann algebra \mathcal{A}, the exponential function

$$
\exp : \operatorname{Aherm}(\mathcal{A}) \rightarrow \mathrm{U}(\mathcal{A}), \quad a \mapsto e^{a}
$$

is surjective. This applies in particular to $\mathcal{A}=B(\mathcal{H})$, so that for every complex Hilbert space \mathcal{H}, the exponential function $\exp : \operatorname{Aherm}(\mathcal{H}) \rightarrow \mathrm{U}(\mathcal{H}), a \mapsto e^{a}$ is surjective.

Exercise 12.6 Show that every cyclic representation of an abelian involutive semigroup $(S, *)$ is multiplicity free. Hint: Since $\pi(S)^{\prime}=\pi(S)^{\prime \prime \prime}$ one may assume that $S=\mathcal{A}$ is a commutative C^{*}-algebra. In this case we know the cyclic representations and the corresponding commutants (Exercise 4.2.1).

Conclude with Exercise 10.2 that a representation of an abelian involutive semigroup on a separable Hilbert space is cyclic if and only if it is multiplicity free.

Exercise 12.7 The function

$$
\Phi: \mathbb{R} \rightarrow \mathbb{R}, \quad t \mapsto \begin{cases}e^{-\frac{1}{t}}, & \text { for } t>0 \\ 0, & \text { for } t \leq 0\end{cases}
$$

is smooth. Hint: The higher derivatives of $e^{-\frac{1}{t}}$ are of the form $P\left(t^{-1}\right) e^{-\frac{1}{t}}$, where P is a polynomial.
(b) For $\lambda>0$ the function $\Psi(t):=\Phi(t) \Phi(\lambda-t)$ is a non-negative smooth function with $\operatorname{supp}(\Psi)=[0, \lambda]$.
Exercise 12.8 (A smoothing procedure) Let $f \in C_{c}^{1}(\mathbb{R})$ be a C^{1}-function with compact support and $\gamma \in C(\mathbb{R}, E)$, where E is a Banch space. Then the convolution

$$
h:=f * \gamma: \mathbb{R} \rightarrow E, \quad t \mapsto \int_{\mathbb{R}} f(s) \gamma(t-s) d s=\int_{\mathbb{R}} f(t-s) \gamma(s) d s
$$

of f and γ is continuously differentiable with $h^{\prime}=f^{\prime} * \gamma$. Suppose, in addition, that $\int_{\mathbb{R}} f d t=1$. Can you find an estimate for $\|\gamma(t)-(f * \gamma)(t)\|$? Hint:

$$
\int_{\mathbb{R}} f(t-s) \gamma(s) d s=\int_{t-\operatorname{supp}(f)} f(t-s) \gamma(s) d s
$$

Exercise 12.9 Let X_{1}, \ldots, X_{n} be Banach spaces and $\beta: X_{1} \times \ldots \times X_{n} \rightarrow Y$ a continuous n-linear map.
(a) Show that there exists a constant $C \geq 0$ with

$$
\left\|\beta\left(x_{1}, \ldots, x_{n}\right)\right\| \leq C\left\|x_{1}\right\| \cdots\left\|x_{n}\right\| \quad \text { for } \quad x_{i} \in X_{i} .
$$

(b) Show that β is differentiable with

$$
\mathrm{d} \beta\left(x_{1}, \ldots, x_{n}\right)\left(h_{1}, \ldots, h_{n}\right)=\sum_{j=1}^{n} \beta\left(x_{1}, \ldots, x_{j-1}, h_{j}, x_{j+1}, \ldots, x_{n}\right) .
$$

Exercise 12.10 Let Y be a Banach space and $a_{n, m}, n, m \in \mathbb{N}$, elements in Y with

$$
\sum_{n, m}\left\|a_{n, m}\right\|:=\sup _{N \in \mathbb{N}}^{n, m \leq N}, ~\left\|a_{n, m}\right\|<\infty .
$$

(a) Show that

$$
A:=\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} a_{n, m}=\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} a_{n, m}
$$

and that both iterated sums exist.
(b) Show that for each sequence $\left(S_{n}\right)_{n \in \mathbb{N}}$ of finite subsets $S_{n} \subseteq \mathbb{N} \times \mathbb{N}, n \in \mathbb{N}$, with $S_{n} \subseteq S_{n+1}$ and $\bigcup_{n} S_{n}=\mathbb{N} \times \mathbb{N}$ we have

$$
A=\lim _{n \rightarrow \infty} \sum_{(j, k) \in S_{n}} a_{j, k} .
$$

Exercise 12.11 (Cauchy Product Formula) Let X, Y, Z be Banach spaces and $\beta: X \times Y \rightarrow Z$ a continuous bilinear map. Suppose that if $x:=\sum_{n=0}^{\infty} x_{n}$ is absolutely convergent in X and if $y:=\sum_{n=0}^{\infty} y_{n}$ is absolutely convergent in Y, then

$$
\beta(x, y)=\sum_{n=0}^{\infty} \sum_{k=0}^{n} \beta\left(x_{k}, y_{n-k}\right) .
$$

Hint: Use Exercise 12.10(b).

