10. Problem sheet on "Lie Groups and Their Representations"

Exercise 10.1 Let (π, \mathcal{H}) be a representation of the involutive semigroup $(S, *)$ and $v \in \mathcal{H}$. Show that the following assertions are equivalent:
(a) v is a cyclic vector for $\pi(S)$.
(b) v is a cyclic vector for the von Neumann algebra $\pi(S)^{\prime \prime}$.
(c) v separating for the von Neumann algebra $\pi(S)^{\prime}$, i.e., the map $\pi(S)^{\prime} \rightarrow \mathcal{H}, A \mapsto A v$ is injective.

Hint: To see that (c) implies (a), consider the projection P onto $(\pi(S) v)^{\perp}$, which is an element of $\pi(S)^{\prime}$.

Exercise 10.2 Let (π, \mathcal{H}) be a multiplicity free representation of the involutive semigroup $(S, *)$ on the separable Hilbert space \mathcal{H}. Show that (π, \mathcal{H}) is cyclic. Hint: Write \mathcal{H} as a direct sum of at most countably many cyclic representations $\left(\pi_{j}, \mathcal{H}_{j}, v_{j}\right)$ with cyclic unit vectors $\left(v_{j}\right)_{j \in J}$ and find $c_{j}>0$ such that $v:=\sum_{j \in J} c_{j} v_{j}$ converges in \mathcal{H}. Now show that v is a separating vector for $\pi(S)^{\prime}$ and use Exercise 10.1. Note that the orthogonal projections P_{j} onto \mathcal{H}_{j} are contained in $\pi(S)^{\prime}$.

Exercise 10.3 Let $\left(v_{n}\right)_{n \in \mathbb{N}}$ be a sequence in a Hilbert space \mathcal{H} which converges weakly to v and satisfies $\left\|v_{n}\right\| \rightarrow\|v\|$. Then we have $v_{n} \rightarrow v$.

Exercise 10.4 Let \mathcal{A} be a unital C^{*}-algebra and $a=a^{*} \in \mathcal{A}$ with $\|a\|<1$. Show that

$$
b:=\sqrt{1-a}:=\sum_{n=0}^{\infty}\binom{\frac{1}{2}}{n}(-1)^{n} a^{n}
$$

is hermitian and satisfies $b^{2}=a$. Show further that

$$
u:=a+i \sqrt{\mathbf{1 - a}} \in \mathrm{U}(\mathcal{A})
$$

and conclude that $\mathcal{A}=\operatorname{span} \mathrm{U}(\mathcal{A})$. Hint: To verify $b^{2}=\mathbf{1}-a$, it suffices to consider the commutative C^{*}-algebra generated by a.

Exercise 10.5 Let G be a group acting in a measure preserving fashion on the σ-finite measure space (X, \mathfrak{S}, μ). The measure μ is said to be ergodic (with respect to this action) if any G-invariant subset $E \in \mathfrak{S}$ either

$$
\mu(E)=0 \quad \text { or } \quad \mu\left(E^{c}\right)=0 .
$$

Show that, if μ is ergodic, then the unitary representation of $\mathcal{M}(X, \mathbb{T}) \rtimes G$ on $L^{2}(X, \mu)$ by

$$
(\pi(\theta, g) f)(x):=\theta(x) f\left(g^{-1} \cdot x\right)
$$

(cf. Remark 2.2.5) is irreducible. We suggest the following steps:
(i) Any element of the commutant of $\pi(\mathcal{M}(X, \mathbb{T}))$ coincides with $\rho(h) f:=h f$ for some $h \in L^{\infty}(X, \mu)$. Hint: Exercise 10.4 implies $\mathcal{M}(X, \mathbb{T})$ has the same commutant as $L^{\infty}(X, \mu)$; then use Exercise 4.2.1, asserting that $L^{\infty}(X, \mu)^{\prime}=L^{\infty}(X, \mu)$ holds if $L^{\infty}(X, \mu)$ is considered as operators on $L^{2}(X, \mu)$.
(ii) If $\rho(h)$ commutes with $\pi(G)$, then h coincides μ-almost everywhere with a constant function.
(iii) Use Schur's Lemma to conclude that π is irreducible because

$$
\pi(\mathcal{M}(X, \mathbb{T}) \rtimes G)^{\prime}=\mathbb{C} 1
$$

Exercise 10.6 (Metric characterization of midpoints) Let $(X,\|\cdot\|)$ be a normed space and $x, y \in X$ distinct points. Let

$$
M_{0}:=\left\{z \in X:\|z-x\|=\|z-y\|=\frac{1}{2}\|x-y\|\right\} \quad \text { and } \quad m:=\frac{x+y}{2} .
$$

For a subset $A \subseteq X$ we define its diameter

$$
\delta(A):=\sup \{\|a-b\|: a, b \in A\} .
$$

Show that:
(1) If X is a pre-Hilbert space (i.e., a vector space with a hermitian scalar product), then $M_{0}=\{m\}$ is a one-element set.
(2) For $z \in M_{0}$ we have $\|z-m\| \leq \frac{1}{2} \delta\left(M_{0}\right) \leq \frac{1}{2}\|x-y\|$.
(3) For $n \in \mathbb{N}$ we define inductively:

$$
M_{n}:=\left\{p \in M_{n-1}:\left(\forall z \in M_{n-1}\right)\|z-p\| \leq \frac{1}{2} \delta\left(M_{n-1}\right)\right\}
$$

Then we have for each $n \in \mathbb{N}$:
(a) M_{n} is a convex set.
(b) M_{n} is invariant under the point reflection $s_{m}(a):=2 m-a$ in m.
(c) $m \in M_{n}$.
(d) $\delta\left(M_{n}\right) \leq \frac{1}{2} \delta\left(M_{n-1}\right)$.
(4) $\bigcap_{n \in \mathbb{N}} M_{n}=\{m\}$.

Exercise 10.7 (Isometries of normed spaces are affine maps) Let $(X,\|\cdot\|)$ be a normed space endowed with the metric $d(x, y):=\|x-y\|$. Show that each isometry $\varphi:(X, d) \rightarrow$ (X, d) is an affine map by using the following steps:
(1) It suffices to assume that $\varphi(0)=0$ and to show that this implies that φ is a linear map.
(2) $\varphi\left(\frac{x+y}{2}\right)=\frac{1}{2}(\varphi(x)+\varphi(y))$ for $x, y \in X$. Hint: Exercise 10.6.
(3) φ is continuous.
(4) $\varphi(\lambda x)=\lambda \varphi(x)$ for $\lambda \in 2^{\mathbb{Z}} \subseteq \mathbb{R}$.
(5) $\varphi(x+y)=\varphi(x)+\varphi(y)$ for $x, y \in X$.
(6) $\varphi(\lambda x)=\lambda \varphi(x)$ for $\lambda \in \mathbb{R}$.

