Fachbereich Mathematik AG Algebra, Geometrie, Funktionalanalysis Prof. Dr. K.-H. Neeb SS 2009

25. Juni 2009

10. Problem sheet on "Lie Groups and Their Representations"

Exercise 10.1 Let (π, \mathcal{H}) be a representation of the involutive semigroup (S, *) and $v \in \mathcal{H}$. Show that the following assertions are equivalent:

- (a) v is a cyclic vector for $\pi(S)$.
- (b) v is a cyclic vector for the von Neumann algebra $\pi(S)''$.
- (c) v separating for the von Neumann algebra $\pi(S)'$, i.e., the map $\pi(S)' \to \mathcal{H}, A \mapsto Av$ is injective.

Hint: To see that (c) implies (a), consider the projection P onto $(\pi(S)v)^{\perp}$, which is an element of $\pi(S)'$.

Exercise 10.2 Let (π, \mathcal{H}) be a multiplicity free representation of the involutive semigroup (S, *) on the separable Hilbert space \mathcal{H} . Show that (π, \mathcal{H}) is cyclic. Hint: Write \mathcal{H} as a direct sum of at most countably many cyclic representations $(\pi_j, \mathcal{H}_j, v_j)$ with cyclic unit vectors $(v_j)_{j\in J}$ and find $c_j > 0$ such that $v := \sum_{j\in J} c_j v_j$ converges in \mathcal{H} . Now show that v is a separating vector for $\pi(S)'$ and use Exercise 10.1. Note that the orthogonal projections P_j onto \mathcal{H}_j are contained in $\pi(S)'$.

Exercise 10.3 Let $(v_n)_{n \in \mathbb{N}}$ be a sequence in a Hilbert space \mathcal{H} which converges weakly to v and satisfies $||v_n|| \to ||v||$. Then we have $v_n \to v$.

Exercise 10.4 Let \mathcal{A} be a unital C^* -algebra and $a = a^* \in \mathcal{A}$ with ||a|| < 1. Show that

$$b := \sqrt{1-a} := \sum_{n=0}^{\infty} {\binom{\frac{1}{2}}{n}} (-1)^n a^n$$

is hermitian and satisfies $b^2 = a$. Show further that

$$u := a + i\sqrt{1 - a} \in \mathcal{U}(\mathcal{A})$$

and conclude that $\mathcal{A} = \operatorname{span} U(\mathcal{A})$. Hint: To verify $b^2 = 1 - a$, it suffices to consider the commutative C^* -algebra generated by a.

Exercise 10.5 Let G be a group acting in a measure preserving fashion on the σ -finite measure space (X, \mathfrak{S}, μ) . The measure μ is said to be *ergodic* (with respect to this action) if any G-invariant subset $E \in \mathfrak{S}$ either

$$\mu(E) = 0$$
 or $\mu(E^c) = 0.$

Show that, if μ is ergodic, then the unitary representation of $\mathcal{M}(X,\mathbb{T}) \rtimes G$ on $L^2(X,\mu)$ by

$$(\pi(\theta, g)f)(x) := \theta(x)f(g^{-1}.x)$$

(cf. Remark 2.2.5) is irreducible. We suggest the following steps:

- (i) Any element of the commutant of $\pi(\mathcal{M}(X,\mathbb{T}))$ coincides with $\rho(h)f := hf$ for some $h \in L^{\infty}(X,\mu)$. Hint: Exercise 10.4 implies $\mathcal{M}(X,\mathbb{T})$ has the same commutant as $L^{\infty}(X,\mu)$; then use Exercise 4.2.1, asserting that $L^{\infty}(X,\mu)' = L^{\infty}(X,\mu)$ holds if $L^{\infty}(X,\mu)$ is considered as operators on $L^{2}(X,\mu)$.
- (ii) If $\rho(h)$ commutes with $\pi(G)$, then h coincides μ -almost everywhere with a constant function.
- (iii) Use Schur's Lemma to conclude that π is irreducible because

$$\pi(\mathcal{M}(X,\mathbb{T})\rtimes G)'=\mathbb{C}\mathbf{1}.$$

Exercise 10.6 (Metric characterization of midpoints) Let $(X, \|\cdot\|)$ be a normed space and $x, y \in X$ distinct points. Let

$$M_0 := \{z \in X : ||z - x|| = ||z - y|| = \frac{1}{2}||x - y||\}$$
 and $m := \frac{x + y}{2}$

For a subset $A \subseteq X$ we define its *diameter*

$$\delta(A) := \sup\{ \|a - b\| : a, b \in A \}.$$

Show that:

- (1) If X is a pre-Hilbert space (i.e., a vector space with a hermitian scalar product), then $M_0 = \{m\}$ is a one-element set.
- (2) For $z \in M_0$ we have $||z m|| \le \frac{1}{2}\delta(M_0) \le \frac{1}{2}||x y||$.
- (3) For $n \in \mathbb{N}$ we define inductively:

$$M_n := \{ p \in M_{n-1} : (\forall z \in M_{n-1}) \ \|z - p\| \le \frac{1}{2} \delta(M_{n-1}) \}.$$

Then we have for each $n \in \mathbb{N}$:

- (a) M_n is a convex set.
- (b) M_n is invariant under the point reflection $s_m(a) := 2m a$ in m.
- (c) $m \in M_n$.
- (d) $\delta(M_n) \leq \frac{1}{2}\delta(M_{n-1}).$

(4)
$$\bigcap_{n \in \mathbb{N}} M_n = \{m\}.$$

Exercise 10.7 (Isometries of normed spaces are affine maps) Let $(X, \|\cdot\|)$ be a normed space endowed with the metric $d(x, y) := \|x - y\|$. Show that each isometry $\varphi \colon (X, d) \to (X, d)$ is an affine map by using the following steps:

(1) It suffices to assume that $\varphi(0) = 0$ and to show that this implies that φ is a linear map.

(2)
$$\varphi(\frac{x+y}{2}) = \frac{1}{2}(\varphi(x) + \varphi(y))$$
 for $x, y \in X$. Hint: Exercise 10.6.

- (3) φ is continuous.
- (4) $\varphi(\lambda x) = \lambda \varphi(x)$ for $\lambda \in 2^{\mathbb{Z}} \subseteq \mathbb{R}$.
- (5) $\varphi(x+y) = \varphi(x) + \varphi(y)$ for $x, y \in X$.
- (6) $\varphi(\lambda x) = \lambda \varphi(x)$ for $\lambda \in \mathbb{R}$.