Fachbereich Mathematik AG Algebra, Geometrie, Funktionalanalysis Prof. Dr. K.-H. Neeb SS 2009

16. April 2009

1. Problem sheet on "Lie Groups and Their Representations"

Exercise 1.1 Let \mathcal{A} be a Banach algebra over $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$. If \mathcal{A} has no unit, we cannot directly associate a "unit group" to \mathcal{A} . However, there is a different way to do that by considering on \mathcal{A} the multiplication

$$x * y := x + y + xy.$$

Show that:

(a) The space $\mathcal{A}_+ := \mathcal{A} \times \mathbb{K}$ is a unital Banach algebra with respect to the multiplication

$$(a,t)(a',t') := (aa' + ta' + t'a, tt')$$

and

$$||(a,t)|| := ||a|| + |t|.$$

- (b) The map $\eta: \mathcal{A} \to \mathcal{A}_+, x \mapsto (x, 1)$ is injective and satisfies $\eta(x * y) = \eta(x)\eta(y)$. Conclude in particular that $(\mathcal{A}, *, 0)$ is a monoid, i.e., a semigroup with neutral element 0.
- (c) An element $a \in \mathcal{A}$ is said to be *quasi-invertible* if it is an invertible element in the monoid $(\mathcal{A}, *, 0)$. Show that the set \mathcal{A}^{\times} of quasi-invertible elements of \mathcal{A} is an open subset and that $(\mathcal{A}^{\times}, *, 0)$ is a topological group.

Exercise 1.2 Let \mathcal{H} be a Hilbert space. Show that:

- (1) The involution on $B(\mathcal{H})$ is continuous with respect to the weak operator topology.
- (2) On every bounded subset $K \subseteq B(\mathcal{H})$, the multiplication $(A, B) \mapsto AB$ is continuous with respect to the strong operator topology.
- (3) On the unit sphere $\mathbb{S} := \{x \in \mathcal{H} : ||x|| = 1\}$ the norm topology coincides with the weak topology.

Exercise 1.3 (Antilinear Isometries) Let \mathcal{H} be a complex Hilbert space. Show that:

- (a) There exists an antilinear isometric involution τ on \mathcal{H} . Hint: Use an orthonormal basis $(e_j)_{j \in J}$ of $B(\mathcal{H})$.
- (b) A map $\varphi: \mathcal{H} \to \mathcal{H}$ is an antilinear isometry if and only if

$$\langle \varphi(v), \varphi(w) \rangle = \langle w, v \rangle \quad \text{for} \quad v, w \in \mathcal{H}.$$

(c) If σ is an antilinear isometric involution of \mathcal{H} , then there exists an orthonormal basis $(e_j)_{j\in J}$ fixed pointwise by σ . Hint: Show that $\mathcal{H}^{\sigma} := \{v \in \mathcal{H}: \sigma(v) = v\}$ is a real Hilbert space with $\mathcal{H}^{\sigma} \oplus i\mathcal{H}^{\sigma} = \mathcal{H}$ and pick an ONB in \mathcal{H}^{σ} .

Exercise 1.4 (Antilinear Isometries) Let \mathcal{H} be a complex Hilbert space. Show that:

- (a) In the group $U_s(\mathcal{H})$ of semilinear (=linear or antilinear) surjective isometries of \mathcal{H} , the unitary group $U(\mathcal{H})$ is a normal subgroup of index 2.
- (b) Each antilinear isometry φ of \mathcal{H} induces a map $\overline{\varphi} \colon \mathbb{P}(\mathcal{H}) \to \mathbb{P}(\mathcal{H}), [v] \mapsto [\varphi(v)]$ preserving $\beta([v], [w]) = \frac{|\langle v, w \rangle|^2}{\|v\|^2 \|w\|^2}$, i.e.,

$$\beta(\overline{\varphi}[v], \overline{\varphi}[w]) = \frac{|\langle \varphi(v), \varphi(w) \rangle|^2}{\|\varphi(v)\|^2 \|\varphi(w)\|^2} = \beta([v], [w]).$$

- (c) An element $g \in U(\mathcal{H})$ induces the identity on $\mathbb{P}(\mathcal{H})$ if and only if $g \in \mathbb{T}\mathbf{1}$.
- (d) If there exists an antilinear isometry inducing the identity on $\mathbb{P}(\mathcal{H})$, then dim $\mathcal{H} = 1$. Hint: Show first that $\sigma^2 = \lambda \mathbf{1}$ for some $\lambda \in \mathbb{T}$. Find $\mu \in \mathbb{T}$ such that $\tau := \mu \sigma$ is an involution and use Exercise 1.3(c).

Exercise 1.5 Let G be a group, endowed with a topology τ . Show that (G, τ) is a topological group if (and only if) the following conditions are satisfied:

- (i) The left multiplication maps $\lambda_q: G \to G, x \mapsto gx$ are continuous.
- (ii) The right multiplication maps $\rho_q: G \to G, x \mapsto xg$ are continuous.
- (iii) The inversion map $\eta_G: G \to G$ is continuous in **1**.
- (iv) The multiplication $m_G: G \times G \to G$ is continuous in (1, 1).

Exercise 1.6 Let G and N be topological groups and suppose that the homomorphism $\alpha: G \to \operatorname{Aut}(N)$ defines a continuous map

$$G \times N \to N$$
, $(g, n) \mapsto \alpha(g)(n)$.

Then $N \times G$ is a group with respect to the multiplication

$$(n,g)(n',g') := (n\alpha(g)(n'),gg'),$$

called the semidirect product of N and G with respect to α . It is denoted $N \rtimes_{\alpha} G$. Show that it is a topological group with respect to the product topology.

A typical example is the group

$$Mot(\mathcal{H}) := \mathcal{H} \rtimes_{\alpha} U(\mathcal{H})$$

of affine isometries of a complex Hilbert space \mathcal{H} ; also called the *motion group*. In this case $\alpha(g)(v) = gv$ and $Mot(\mathcal{H})$ acts on \mathcal{H} by (b,g).v := b + gv (hence the name). On $U(\mathcal{H})$ we may either use the norm topology or the strong topology. For both we obtain group topologies on $Mot(\mathcal{H})$ (verify this!).