Fachbereich Mathematik Prof. Dr. Karl-Hermann Neeb Dipl.-Math. Hasan Gündoğan

July 14 & 15, 2009

Exercise Sheet no. 7 of "Topology"

Exercise E64

If $f: X \to Y$ is a map between topological spaces and $X = X_1 \cup \ldots \cup X_n$ holds with closed subsets X_1, \ldots, X_n , then f is continuous if and only if all restrictions $f|_{X_i}$ are continuous.

Exercise E65

Show that the homotopy relation on $P(X, x_0, x_1)$ is an equivalence relation. Hint: Exercise E64 helps to glue homotopies.

Exercise E66

Show that for $n \ge 2$ the sphere \mathbb{S}^n is simply connected. For the proof, proceed along the following steps:

(a) Let $\gamma : [0,1] \to \mathbb{S}^n$ be continuous. Then there exists an $m \in \mathbb{N}$ such that $\|\gamma(t) - \gamma(t')\| < \frac{1}{2}$ for $|t - t'| < \frac{1}{m}$.

(b) Define $\widetilde{\alpha} : [0,1] \to \mathbb{R}^{n+1}$ as the piecewise affine curve with $\widetilde{\alpha}(\frac{k}{m}) = \gamma(\frac{k}{m})$ for $k = 0, \ldots, m$. Then $\alpha(t) := \frac{1}{\|\widetilde{\alpha}(t)\|} \widetilde{\alpha}(t)$ defines a continuous curve $\alpha : [0,1] \to \mathbb{S}^n$.

(c) $\alpha \sim \gamma$. Hint: Consider $H(t,s) := \frac{(1-s)\gamma(t)+s\alpha(t)}{\|(1-s)\gamma(t)+s\alpha(t)\|}$.

(d) α is not surjective. The image of α is the central projection of a polygonal arc on the sphere. (e) If $\beta \in \Omega(\mathbb{S}^n, y_0)$ is not surjective, then $\beta \sim y_0$ (it is homotopic to a constant map). Hint: Let $p \in \mathbb{S}^n \setminus \text{im } \beta$. Using stereographic projection, where p corresponds to the point at infinity, show that $\mathbb{S}^n \setminus \{p\}$ is homeomorphic to \mathbb{R}^n , hence contractible. (f) $\pi_1(\mathbb{S}^n, y_0) = \{[y_0]\}$ for $n \geq 2$ and $y_0 \in \mathbb{S}^n$.

Exercise E67

Let X be a topological space, $x_0, x_1 \in X$ and $\alpha \in P(X, x_0, x_1)$ a path from x_0 to x_1 . Show that the map

$$C \colon \pi_1(X, x_1) \to \pi_1(X, x_0), \quad [\gamma] \mapsto [\alpha * \gamma * \overline{\alpha}]$$

is an isomorphism of groups. In this sense the fundamental group does not depend on the base point if X is arcwise connected.

Exercise E68

Let $\sigma: G \times X \to X$ be a continuous action of the topological group G on the topological space X and $x_0 \in X$. Then the orbit map $\sigma^{x_0}: G \to X, g \mapsto \sigma(g, x_0)$ defines a group homomorphism

$$\pi_1(\sigma^{x_0}) \colon \pi_1(G) \to \pi_1(X, x_0).$$

Show that the image of this homomorphism is central, i.e., lies in the center of $\pi_1(X, x_0)$. Hint: Mimic the argument in the proof of Lemma 6.1.8.

Exercise E69

Let $F: I^2 \to X$ be a continuous map with $F(0,s) = x_0$ for $s \in I$ and define

$$\gamma(t) := F(t,0), \quad \eta(t) := F(t,1), \quad \alpha(t) := F(1,t), \quad t \in I.$$

Show that $\gamma * \alpha \sim \eta$. Hint: Consider the map

$$G: I^2 \to I^2, \quad G(t,s) := \begin{cases} (2t,s) & \text{for } 0 \le t \le \frac{1}{2}, s \le 1-2t, \\ (1,2t-1) & \text{for } \frac{1}{2} \le t \le 1, s \le 2t-1, \\ (t+\frac{1-s}{2},s) & \text{else} \end{cases}$$

and show that it is continuous. Take a look at the boundary values of $F \circ G$.

Exercise E70

- Let $q: G \to H$ be an morphism of topological groups with discrete kernel Γ . Show that:
- (1) If $V \subseteq G$ is an open **1**-neighborhood with $(V^{-1}V) \cap \Gamma = \{\mathbf{1}\}$ and q is open, then $q|_V \colon V \to q(V)$ is a homeomorphism.
- (2) If q is open and surjective, then q is a covering.
- (3) If q is open and H is connected, then q is surjective, hence a covering.

Exercise E71

A map $f: X \to Y$ between topological spaces is called a *local homeomorphism* if each point $x \in X$ has an open neighborhood U such that $f|_U: U \to f(U)$ is a homeomorphism onto an open subset of Y.

- (1) Show that each covering map is a local homeomorphism.
- (2) Find a surjective local homeomorphism which is not a covering. Can you also find an example where X is connected?

Exercise E72

Let X be a topological space. The cone over X is the space

$$C(X) := (X \times [0,1]) / (X \times \{1\}).$$

Show that C(X) is always contractible.

Exercise E73

(Hawaiian earring)

In the euclidean plane \mathbb{R}^2 , we write

$$C_r(m) := \{x \in \mathbb{R}^2 : ||x - m||_2 = r\}$$

for the circle of radius r and center m. Consider the union

$$X := \bigcup_{n \in \mathbb{N}} C_{\frac{1}{n}} \left(\frac{1}{n}, 0\right).$$

Show that X is arcwise connected but not semilocally simply connected. Hint: Consider the point $(0,0) \in X$.

