Fachbereich Mathematik Prof. Dr. Karl-Hermann Neeb Dipl.-Math. Hasan Gündoğan

June 2, 3 & 9, 2009

Exercise Sheet no. 4 of "Topology"

Note: Exercise E37, E38, E41 are essentially identical to E29, E30, E31, respectively.

Exercise E32

Consider the two element set $X = \{x, y\}$, endowed with the indiscrete topology. Show that $\mathcal{F} = \{\{x\}, \{x, y\}\}$ is a filter on X converging to x and y. This shows that limits of filters need not be unique.

Exercise E33

Show that a topological space X is separated if and only if each filter \mathcal{F} on X converges at most to one point.

Exercise E34

Let X be a finite set. Show that for each ultrafilter \mathcal{U} on X there exists a point $x \in X$ with $\mathcal{U} = \{A \subseteq X : x \in A\}.$

Exercise E35

Let X be a topological space and $p \in X$.

- (a) Let $(x_i)_{i \in I} \subseteq X$ be a net. For each $i \in I$, let $F_i := \{x_j : j \ge i\}$.
 - Show that the F_i form a filter basis \mathcal{F} on X.
 - Show that $x_i \to p$ if and only if $\mathcal{F} \to p$.
- (b) Let $\mathcal{F} \subseteq \mathbb{P}(X)$ be a filter basis. Define the relation \preceq on \mathcal{F} by $U \succeq V : \Leftrightarrow U \subseteq V$.
 - Show that (\mathcal{F}, \preceq) is a directed partially ordered set. So any choice $(x_U)_{U \in \mathcal{F}} \in \prod_{U \in \mathcal{F}} U$ determines a net $(x_U)_{U \in \mathcal{F}} \subseteq X$.
 - Show that $\mathcal{F} \to p$ if and only if $x_U \to p$ for all choices $(x_U)_{U \in \mathcal{F}} \in \prod_{U \in \mathcal{F}} U$.

Exercise E36

Let X be a topological space and $A \subseteq X$ a subset.

(a) Show that

 $\overline{A} = \{ x \in X | \text{ There is a net } (x_i)_{i \in I} \subseteq A \text{ with } x_i \to x \in X. \}$

- (b) What happens with the statement in (a) when you replace the word "net" by "sequence"?
- (c) Show that

$$\overline{A} = \{ x \in X | \text{ There is a filter basis } \mathcal{F} \subseteq \mathbb{P}(A) \text{ with } \mathcal{F} \to x \in X. \}$$

Exercise E37

Let (X, τ) be a topological space, \sim be an equivalence relation on $X, q: X \to [X] := X/ \sim = \{[x]_{\sim} = \{y \in X | y \sim x\} | x \in X\}$ be the quotient map, and endow [X] with the quotient topology.

(a) Show that, if $f: X \to Y$ is a continuous map satisfying

$$x \sim y \quad \Rightarrow \quad f(x) = f(y) \qquad \forall x, y \in X,$$

then there exists a unique continuous map $\overline{f} \colon [X] \to Y$ with $f = \overline{f} \circ q$.

(b) Assume there is a subset $Z \subseteq X$ such that for all $x \in X$ we have $[x]_{\sim} \cap Z \neq \emptyset$. Write $[Z]' := \{ [x]'_{\sim} := \{ y \in Z | y \sim x \} | x \in Z \}$ and endow [Z]' with the quotient topology. Show that the map $\varphi : [Z]' \to [X], [x]'_{\sim} \mapsto [x]_{\sim}$ is a well-defined continuous bijection. Also show that, if $q : X \to [X]$ is an open map, then $\varphi : [Z]' \to [X]$ is a homeomorphism.

Exercise E38

Let $(G, \cdot, 1)$ be a group, (X, τ) be a topological space and $\sigma : G \times X \to X$, $(g, x) \mapsto \sigma_g(x) =: g.x$ a group action, i.e. $G \to S(X)$, $g \mapsto \sigma_g$ is a morphism to the symmetric group of X.

For $x \in X$ the set $\mathcal{O}_x := \{g.x | g \in G\}$ is called the *orbit* of x with respect to σ and we write $X/G := \{\mathcal{O}_x | x \in X\}$ for the set of all orbits. A subset $A \subseteq X$ is a system of representatives if for all $x \in X$ the intersection $\mathcal{O}_x \cap A$ contains exactly one element.

(a) Show that the relation ~ on X/G, defined by $x \sim y :\iff y \in \mathcal{O}_x$, is an equivalence relation. We endow X/G with the quotient topology with respect to $q: X \to [X] := X/G$.

(b) Show that, if G is a topological group and σ is continuous, then $q: X \to [X]$ is an open map. Quotient topologies can be very bizarre as the following example shows:

(c) Let $G := (\mathbb{R}^{\times}_+, \cdot, 1)$. Show that $\sigma : G \times \mathbb{R} \to \mathbb{R}, (p, r) \mapsto p \cdot r$ is a continuous group action.

- (d) Show that \mathbb{R}/G contains exactly three elements. Give an easy system of representatives.
- (e) Show that \mathbb{R}/G is not T_2 .

Exercise E39

Let X be a topological space and define the *diagonal* of X to be $\Delta_X := \{(x, x) \in X \times X | x \in X\}$.

- (a) Show that X is separated if and only if Δ_X is closed in $X \times X$.
- (b) Let \sim be an equivalence relation on X and $q: X \to [X]$ the quotient map and endow [X] with the quotient topology. We define the set $R := \{(x, x') \in X \times X | x \sim x'\}$. Show that, if $q: X \to [X]$ is an open map, then [X] is T_2 if and only if R is closed in $X \times X$.

Exercise E40

Let $(d_i)_{i \in I}$ be a family of semimetrics on the set X and $\tau := \bigcap_{i \in I} \tau_{d_i}$ be the topology defined by this family. Show that:

- (a) The diagonal mapping $\eta: X \to \prod_{i \in I} (X, \tau_{d_i}), x \mapsto (x)_{i \in I}$ is a homeomorphism onto its image.
- (b) A net $(x_j)_{j \in J}$ converges in (X, τ) to $p \in X$ if and only if $d_i(x_j, p) \to 0$ holds for each $i \in I$.
- (c) (X, τ) is Hausdorff if and only if for $x \neq y$ there exists an *i* with $d_i(x, y) \neq 0$.

Exercise E41

Let $(X_i, d_i)_{i \in I}$ be an *uncountable* family of non-trivial¹ metric spaces and $X := \prod_{i \in I} X_i$ their topological product. Show that the product topology does *not* coincide with the topology induced by any metric d on X.

Hint: Assume the converse, consider the subspace $(S := \prod_{i \in I} \{x_i, y_i\}, d_{|S})$, where $x_i \neq y_i \in X_i$, and find a contradiction. Can you now give an example of a T_2 -space which is not T_3 ?

¹Each X_i contains more than one element.