Fachbereich Mathematik Prof. Dr. Karl-Hermann Neeb Dipl.-Math. Hasan Gündoğan

Summer Semester 2009 May 19, 20 & 26, 2009

Exercise Sheet no. 3 of "Topology"

Exercise E23

A subset $\mathcal{A} \subseteq \mathbb{P}(X)$ is a basis for a topology on X if and only if

- (1) $\bigcup \mathcal{A} = X$ and
- (2) for each $x \in A \cap B$, $A, B \in \mathcal{A}$, there exists a $C \in \mathcal{A}$ with $x \in C \subseteq A \cap B$.

Exercise E24

Let X_1, \ldots, X_n be topological spaces. Show that the sets of the form

$$U_1 \times \ldots \times U_n$$
, $U_i \subseteq X_i$ open,

form a basis for the product topology on $X_1 \times \ldots \times X_n$ and for $A_i \subseteq X_i$, $1 \le i \le n$, we have

$$\overline{\prod_{i=1}^{n} A_i} = \prod_{i=1}^{n} \overline{A_i} \quad \text{and} \quad \left(\prod_{i=1}^{n} A_i\right)^0 = \prod_{i=1}^{n} A_i^0.$$

Exercise E25

Let X and Y be topological spaces and $x \in X$. Show that the maps

$$j_x \colon Y \to X \times Y, \quad y \mapsto (x, y)$$

are continuous, and the corestriction

$$j_x^{|Y \times \{x\}} \colon Y \to Y \times \{x\}$$

is a homeomorphism.

Exercise E26

Let $(X_i)_{i \in I}$ be a family of topological spaces and $X := \prod_{i \in I} X_i$ the topological product space. Show that:

- (a) X is T_2 if and only if each X_i is T_2 .
- (b) X is T_3 if and only if each X_i is T_3 . Hint: Use (a) and Proposition 1.4.3 for one direction and the fact that subspaces of T_3 -spaces are T_3 (Why?) for the other.

Exercise E27

Let (X_i, d_i) , i = 1, ..., n, be metric spaces. Show that the metrics

$$d(x,y) := \sum_{i=1}^{n} d_i(x_i, y_i)$$
 and $d_{\infty}(x, y) := \max\{d_i(x_i, y_i) : i = 1, \dots, n\}$

both induce the product topology on $X := \prod_{i=1}^{n} X_i$.

Exercise E28

Let $(X_i, d_i)_{i \in \mathbb{N}}$ be a sequence of metric spaces and $X := \prod_{i \in \mathbb{N}} X_i$ their topological product. Show that the product topology coincides with the topology on X induced by the metric

$$d(x,y) := \sum_{i=1}^{\infty} \frac{1}{2^i} \frac{d_i(x_i, y_i)}{1 + d_i(x_i, y_i)}$$

(cf. Exercise E13).

Show further that a sequence $(x^{(n)})_{n \in \mathbb{N}}$ in $X = \prod_{i \in \mathbb{N}} X_i$ converges if and only if all component sequences $(x_i^{(n)})_{n \in \mathbb{N}}$ converge.

Exercise E29

Let (X, τ) be a topological space, ~ be an equivalence relation on $X, q: X \to [X] := X/ \sim = \{ [x]_{\sim} = \{ y \in X | y \sim x \} | x \in X \}$ be the quotient map, and endow [X] with the quotient topology.

(a) Show that, if $f: X \to Y$ is a continuous map satisfying

$$x \sim y \quad \Rightarrow \quad f(x) = f(y) \qquad \forall x, y \in X,$$

then there exists a unique continuous map $\overline{f} \colon [X] \to Y$ with $f = \overline{f} \circ q$.

(b) Assume there is a subset $Z \subseteq X$ such that for all $x \in X$ we have $[x]_{\sim} \cap Z \neq \emptyset$. Write $[Z]' := \{ [x]'_{\sim} := \{ y \in Z | y \sim x \} | x \in Z \}$ and endow [Z]' with the quotient topology. Show that the map $\varphi : [Z]' \to [X], [x]'_{\sim} \mapsto [x]_{\sim}$ is a well-defined continuous bijection. Also show that, if $q : X \to [X]$ is an open map, then $\varphi : [Z]' \to [X]$ is a homeomorphism.

Exercise E30

Let $(G, \cdot, 1)$ be a group, (X, τ) be a topological space and $\sigma : G \times X \to X$, $(g, x) \mapsto \sigma_g(x) =: g.x$ a group action, i.e. $G \to S(X)$, $g \mapsto \sigma_g$ is a morphism to the symmetric group of X.

For $x \in X$ the set $\mathcal{O}_x := \{g.x | g \in G\}$ is called the *orbit* of x with respect to σ and we write $X/G := \{\mathcal{O}_x | x \in X\}$ for the set of all orbits. A subset $A \subseteq X$ is a system of representatives if for all $x \in X$ the intersection $\mathcal{O}_x \cap A$ contains exactly one element.

(a) Show that the relation ~ on X/G, defined by $x \sim y :\iff y \in \mathcal{O}_x$, is an equivalence relation. We endow X/G with the quotient topology with respect to $q : X \to [X] := X/G$ (cf. Exercise E29). Quotient topologies can be very bizarre as the following example shows:

- (d) Consider the multiplicative group $G := (\mathbb{R}^{\times}_{+}, \cdot, 1)$ and the set \mathbb{R} . Show that $\sigma : G \times \mathbb{R} \to \mathbb{R}$, $(p, r) \mapsto p \cdot r$ is a group action.
- (e) Show that \mathbb{R}/G contains exactly three elements. Give an easy system of representatives.
- (f) Show that \mathbb{R}/G is not T_2 .

Exercise E31

Let $(X_i, d_i)_{i \in I}$ be an *uncountable* family of non-trivial¹ metric spaces and $X := \prod_{i \in I} X_i$ their topological product. Show that the product topology does *not* coincide with the topology induced by any metric d on X.

Hint: Assume the converse, consider the metric subspace $(S := \prod_{i \in I} \{x_i, y_i\}, d_{|S})$, where $x_i \neq y_i \in X_i$, and find a contradiction.

¹Each X_i contains more than one element.