Fachbereich Mathematik Prof. Dr. Karl-Hermann Neeb Dipl.-Math. Hasan Gündoğan

Summer Semester 2009 May 5, 6 & 12, 2009

Exercise Sheet no. 2 of "Topology"

Exercise E14

Show that the topological spaces

I = [0, 1] and $\mathbb{S}^1 := \{(x, y) \in \mathbb{R}^2 \colon x^2 + y^2 = 1\}$

are not homeomorphic. Hint: Consider the connectedness properties if one point is removed.

Exercise E15

Show that if Y is a connected subset of the topological space X, then its closure \overline{Y} is also connected.

Exercise E16

For a continuous function $f: [0,1] \to \mathbb{R}$, we consider its graph

$$\Gamma(f) := \{ (x, f(x)) \colon 0 < x \le 1 \}.$$

Show that:

- (a) $\Gamma(f)$ is an arcwise connected subset of \mathbb{R}^2 .
- (b) $\overline{\Gamma(f)} = \Gamma(f) \cup (\{0\} \times I_f)$, where $I_f \subseteq \mathbb{R}$ is the set of all those points y for which there exists a sequence $x_n \to 0$ in [0, 1] with $f(x_n) \to y$.
- (c) $\overline{\Gamma(f)}$ is connected.
- (d) For $f(x) := \sin(1/x)$, the set $\overline{\Gamma(f)}$ is not arcwise connected.
- (e) $\overline{\Gamma(f)}$ is arcwise connected if and only if $|I_f| \leq 1$.

Exercise E17

Show that the connected components of a topological space are closed.

Exercise E18

Find an example of an arc-component of a topological space which is not closed.

Exercise E19

A topological space X is called *locally (arcwise) connected*, if each neighborhood U of a point x contains a connected (an arcwise connected) neighborhood V of x.

Show that in a locally connected space the connected components are open and in a locally arcwise connected space the arc-components are open and coincide with the connected components.

Exercise E20

In \mathbb{R}^2 we consider the set

$$X = ([0,1] \times \{1\}) \cup \left(\left\{\frac{1}{n} : n \in \mathbb{N}\right\} \times [0,1]\right) \cup (\{0\} \times [0,1]).$$

Sketch X and show that it is arcwise connected but not locally arcwise connected.

Exercise E21

For a non-empty subset A of the metric space (X, d), we consider the function

$$d_A(x) := \inf\{d(x,a) \colon a \in A\}.$$

Show that:

- (i) $|d_A(x) d_A(y)| \le d(x, y)$ for $x, y \in X$. In particular, d_A is continuous.
- (ii) $d_A(x) = 0$ if and only if $x \in \overline{A}$.
- (iii) Every metric space (X, d) is normal. Hint: For two disjoint closed subsets $A, B \subseteq X$, consider the function $f := d_A d_B$.

Exercise E22

- (a) Which separation axioms does \mathbb{N} , equipped with the cofinite topology (cf. E10), fulfill?
- (b) Is there a topology τ on $X = \{x, y\}$ such that (X, τ) is T_0 , but not T_1 ?
- (c) Is \mathbb{R} , equipped with the usual topology, a T_3 -space?