Fachbereich Mathematik Prof. Dr. Karl-Hermann Neeb Dipl.-Math. Hasan Gündoğan



April 21 & 28, 2009

# Exercise Sheet no. 1 of "Topology"

## Exercise E1

(a) Show that all metrics d on a finite set define the discrete topology.

(b) Show that all finite Hausdorff spaces are discrete.

#### Exercise E2

Find an example of a countable metric space (X, d) for which the topology  $\tau_d$  is not discrete.

#### Exercise E3

Show that a subset M of a topological space X is open if and only if it is a neighborhood of all points  $x \in M$ .

## Exercise E4

Let Y be a subset of a topological space  $(X, \tau)$ . Show that  $\tau|_Y = \{O \cap Y : O \in \tau\}$  defines a topology on Y.

#### Exercise E5

Let  $a < b \le c$  be real numbers. Show that

$$d(f,g) := \int_a^b |f(x) - g(x)| \, dx$$

defines a semimetric on the space  $C([a, c], \mathbb{R})$  of continuous real-valued functions on [a, c]. Show also that d(f, g) = 0 is equivalent to f = g on [a, b] and that d is a metric if and only if b = c.

#### Exercise E6

Let (X, d) be a metric space and  $Y \subseteq X$  be a subset. Show that the subspace topology  $\tau_d|_Y$  on Y coincides with the topology defined by the restricted metric  $d_Y := d|_{Y \times Y}$ .

#### Exercise E7

#### Hausdorff's neighborhood axioms

Let  $(X, \tau)$  be a topological space. Show that the collected  $\mathfrak{U}(x)$  of neighborhoods of a point  $x \in X$  satisfies:

(N1)  $x \in U$  for all  $U \in \mathfrak{U}(x)$  and  $X \in \mathfrak{U}(x)$ .

(N2)  $U \in \mathfrak{U}(x)$  and  $V \supseteq U$  implies  $V \in \mathfrak{U}(x)$ .

(N3)  $U_1, U_2 \in \mathfrak{U}(x)$  implies  $U_1 \cap U_2 \in \mathfrak{U}(x)$ .

(N4) Each  $U \in \mathfrak{U}(x)$  contains a  $V \in \mathfrak{U}(x)$  with the property that  $U \in \mathfrak{U}(y)$  for each  $y \in V$ .

#### Exercise E8

Let X be a set and suppose that we have for each  $x \in X$  a subset  $\mathcal{U}(x) \subseteq \mathbb{P}(X)$ , such that the conditions (N1)-(N4) from the above exercise are satisfied. We then call a subset  $O \subseteq X$  open if  $O \in \mathcal{U}(x)$  holds for each  $x \in O$ . Show that the set  $\tau$  of open subsets of X defines a topology on X for which  $\mathcal{U}(x)$  is the set of all neighborhoods of x.

## Exercise E9

For each norm  $\|\cdot\|$  on  $\mathbb{R}^n$ , the metric  $d(x, y) := \|x - y\|$  defines the same topology. Hint: Use that each norm is equivalent to  $\|x\|_{\infty} := \max\{|x_i|: i = 1, ..., n\}$  (cf. Analysis II).

#### Exercise E10

# Cofinite topology

Let X be a set and

$$\tau := \{\emptyset\} \cup \{A \subseteq X \colon |A^c| < \infty\}.$$

Show that  $\tau$  defines a topology on X. When is this topology hausdorff?

# Exercise E11

#### *p*-adic metric

Let p be a prime number. For  $q \in \mathbb{Q}^{\times}$  we define  $|q|_p := p^{-n}$  if we can write  $q = p^n \frac{a}{b}$ , where  $a \in \mathbb{Z}, 0 \neq b \in \mathbb{Z}$  are not multiples of p. Note that this determines a unique  $n \in \mathbb{Z}$ . We also put  $|0|_p := 0$ . Show that

$$d(x,y) := |x-y|_p$$

defines a metric on  $\mathbb{Q}$  for which the sequence  $(p^n)_{n \in \mathbb{N}}$  converges to 0.

# Exercise E12

Let  $d_1$  and  $d_2$  be two metrics on the set X and write  $B_r^j(x)$  for the balls with respect to  $d_j$ , j = 1, 2. Show that  $d_1$  and  $d_2$  define the same topology on X if and only if for each  $p \in X$  and  $\varepsilon > 0$  there exists a  $\delta > 0$  with

 $B^1_{\delta}(p) \subseteq B^2_{\varepsilon}(p)$ 

and for each  $p \in X$  and  $\varepsilon > 0$  there exists a  $\delta > 0$  with

$$B^2_{\delta}(p) \subseteq B^1_{\varepsilon}(p).$$

## Exercise E13

#### Equivalent bounded metrics

Let (X, d) be a metric space. Show that:

- (a) The function  $f: \mathbb{R}_+ \to [0, 1[, f(t) := \frac{t}{1+t} \text{ is continuous with continuous inverse } g(t) := \frac{t}{1-t}$ . Moreover, f is subadditive, i.e.,  $f(x+y) \leq f(x) + f(y)$  for  $x, y \in \mathbb{R}_+$ .
- (b)  $d'(x,y) := \frac{d(x,y)}{1+d(x,y)}$  is a metric on X with  $\sup_{x,y\in X} d'(x,y) \le 1$ .
- (c) d' and d induce the same topology on X.