Stochastische Analysis

Klaus Ritter

Darmstadt, SS 2009

Vorkenntnisse

Wahrscheinlichkeitstheorie.

Literatur

Insbesondere:

I. Karatzas, S. E. Shreve, Brownian Motion and Stochastic Calculus, Springer-Verlag, New York, 1999.

Inhaltsverzeichnis

Ι	Sto	Stochastische Prozesse				
	1	Grune	dlegende Definitionen	1		
		1.1	Stochastische Prozesse und Filtrationen	1		
		1.2	Stoppzeiten	4		
	2	Der F	Poisson-Prozeß	7		
	3	Marti	ngale	Ć		
		3.1	Martingale in diskreter Zeit	Ć		
		3.2	Martingale in stetiger Zeit	13		
	4	Der k	Kolmogorovsche Konsistenzsatz	21		
II	Bro	wnsch	ne Bewegung	27		
	1	Eine l	Konstruktion der Brownschen Bewegung	28		
	2	Das V	Viener Maß und das Donskersche Invarianzprinzip	31		
		2.1	Das Wiener-Maß	31		
		2.2	Schwache Konvergenz	32		
		2.3	Das Donskersche Invarianzprinzip	33		
	3	Mark	ov-Eigenschaft der Brownschen Bewegung	35		
		3.1	Mehrdimensionale Brownsche Bewegung	35		
		3.2	Markov-Prozesse	36		
		3.3	Starke Markov-Eigenschaft und Spiegelungsprinzip	38		
		3.4	Brownsche Filtrationen	40		
	4	Pfade	eigenschaften der Brownschen Bewegung	41		
II	ISto	chastis	sche Integration	42		
	1	Konst	truktion des stochastischen Integrals	42		
		1.1	Integral für einfache Prozesse	42		
		1.2	Fortsetzung des Integrals	44		
	2	Die It	so-Formel	51		
	3	Die g	eometrische Brownsche Bewegung	54		

IV	Sto	chastische Differentialgleichungen	57
	1	Lösungsbegriffe, Existenz und Eindeutigkeit	57
	2	Starke Lösungen als Diffusionsprozesse	65
	3	Parabolische und stochastische Differentialgleichungen	72
A Funktionen von beschränkter Variation und das Lebesgue-Sti Integral		· ·	7 6
В	Me	hrdimensionale Normalverteilungen	78

Kapitel I

Stochastische Prozesse

Literatur:

Karatzas, Shreve (1999, Chap. 1).

1 Grundlegende Definitionen

1.1 Stochastische Prozesse und Filtrationen

Definition 1. Gegeben: Wahrscheinlichkeitsraum $(\Omega, \mathfrak{A}, P)$, Meßraum (S, \mathfrak{S}) sowie Menge I.

- (i) Stochastischer Proze β mit Zustandsraum (S,\mathfrak{S}) und Parametermenge I: Familie $X = (X_t)_{t \in I}$ von $\mathfrak{A}\text{-}\mathfrak{S}\text{-meßbaren Abbildungen}^1$ $X_t : \Omega \to S$.
- (ii) Trajektorie (Pfad, Realisierung) von X: Abbildung $I \to S$, $t \mapsto X_t(\omega)$ mit festem $\omega \in \Omega$.

Beispiel 1.

- (i) $I = \mathbb{N}_0$: Grenzwertsätze der Stochastik, zeit-diskrete Martingaltheorie, siehe "Probability Theory".
- (ii) $I = \{1, \dots, n\}^2$: Bildverarbeitung, siehe Winkler (1995).
- (iii) $I = \mathbb{Z}^d$: statistische Physik, siehe Georgii (1988).
- (iv) $I = \mathbb{R}^d$: Geostatistik, siehe Cressie (1993).

Fortan,² bis auf Abschnitt 4,

$$I \subset \mathbb{R}, \quad S = \mathbb{R}^d, \quad \mathfrak{S} = \mathfrak{B}(\mathbb{R}^d)$$
 Borelsche σ -Algebra.

In erster Linie

$$I = [0, t_0]$$
 bzw. $I = [0, \infty[$.

¹Alternative Schreibweisen: X(t), $X(t, \cdot)$.

²Notation: Inklusion ⊂ nicht notwendig strikt.

Beispiel 2. Finanzmarkt mit d Finanzgütern. Modelliert durch Preisprozeß X: für $j \in \{1, \ldots, d\}$ ist $X_{j,t}$ der Preis des j-ten Finanzgutes zur Zeit $t \in I$.

Gegeben: Prozesse $X = (X_t)_{t \in I}$ und $Y = (Y_t)_{t \in I}$ auf $(\Omega, \mathfrak{A}, P)$.

Definition 2.

(i) X und Y ununterscheidbar, falls P-f.s.³

$$\forall t \in I : X_t = Y_t.$$

(ii) Y Modifikation (Version) von X, falls

$$\forall t \in I : P(\{X_t = Y_t\}) = 1.$$

(iii) X und Y besitzen dieselben endlich-dimensionalen Randverteilungen, falls⁴

$$\forall n \in \mathbb{N} \quad \forall t_1, \dots, t_n \in I \quad \forall B \in \mathfrak{B}(\mathbb{R}^{nd}) :$$
$$P(\{(X_{t_1}, \dots, X_{t_n}) \in B\}) = P(\{(Y_{t_1}, \dots, Y_{t_n}) \in B\}).$$

Bemerkung 1. Klar: (i) \Rightarrow (ii) \Rightarrow (iii). Umkehrungen i.a. falsch. Jedoch: (i) \Leftrightarrow (ii), falls X und Y P-f.s. rechtsseitig (linksseitig) stetige Pfade besitzen. Siehe Übung 1.1, 1.2.

Definition 3.

(i) Filtration: Familie $\mathfrak{F} = (\mathfrak{F}_t)_{t \in I}$ von σ -Algebren $\mathfrak{F}_t \subset \mathfrak{A}$ mit

$$\forall s, t \in I : s < t \Rightarrow \mathfrak{F}_s \subset \mathfrak{F}_t$$

- (ii) X adaptiert zu Filtration \mathfrak{F} , falls X_t \mathfrak{F}_t - \mathfrak{S} -meßbar für alle $t \in I$.
- (iii) Kanonische Filtration zu X:

$$\mathfrak{F}_t^X = \sigma\left(\left\{X_s : s \le t\right\}\right), \qquad t \in I$$

Bemerkung 2. Klar: \mathfrak{F}^X ist die kleinste Filtration, zu der X adaptiert ist.

Proposition 1. Gegeben: Menge Ω_1 und Meßraum $(\Omega_2, \mathfrak{A}_2)$. Für Abbildungen $U: \Omega_1 \to \Omega_2, V: \Omega_1 \to \mathbb{R}$ sind äquivalent

- (i) V ist $\sigma(\{U\})$ - $\mathfrak{B}(\mathbb{R})$ -meßbar,
- (ii) $\exists g: \Omega_2 \to \mathbb{R}: g \mathfrak{A}_2\text{-}\mathfrak{B}(\mathbb{R})\text{-meßbar} \land V = g \circ U.$

Beweis. (ii) \Rightarrow (i): klar. (i) \Rightarrow (ii): Algebraische Induktion, d.h. zunächst für Elementarfunktionen, dann für nicht-negative meßbare Funktionen über monotone Limiten, schließlich der allgemeine Fall durch Zerlegung in Positiv- und Negativteil. Details im Skript "Probability Theory".

³Eigenschaft a gilt P-f.s.: $\exists A \in \mathfrak{A} : P(A) = 1 \land A \subset \{\omega \in \Omega : \omega \text{ erfüllt } a\}.$

⁴Analog für Prozesse auf verschiedenen Wahrscheinlichkeitsräumen.

Bemerkung 3. Setze⁵⁶ $\Omega_2 = S^{[0,t]}$, $\mathfrak{A}_2 = \mathfrak{S}^{[0,t]}$, definiere $U: \Omega \to \Omega_2$ durch

$$(U(\omega))(s) = X_s(\omega).$$

Dann $\sigma(\{U\}) = \mathfrak{F}_t^X$, denn für jede σ -Algebra \mathfrak{A}' in Ω gilt

$$U\ \mathfrak{A}'\text{-}\mathfrak{A}_2\text{-meßbar}\quad\Leftrightarrow\quad\forall\ s\in[0,t]:X_s\ \mathfrak{A}'\text{-}\mathfrak{S}\text{-meßbar}\quad\Leftrightarrow\quad\mathfrak{F}^X_t\subset\mathfrak{A}'.$$

Somit für $A \subset \Omega$

$$A \in \mathfrak{F}_t^X \quad \Leftrightarrow \quad \exists \ B \in \mathfrak{A}_2 : A = U^{-1}(B).$$

Für $V:\Omega\to\mathbb{R}$ zeigt Proposition 1, daß V genau dann \mathfrak{F}_t^X - $\mathfrak{B}(\mathbb{R})$ -meßbar ist, wenn

$$\forall \ \omega \in \Omega : \quad V(\omega) = g\left(X_{\cdot}(\omega)|_{[0,t]}\right)$$

mit einer \mathfrak{A}_2 - $\mathfrak{B}(\mathbb{R})$ -meßbaren Abbildung $g:S^{[0,t]}\to\mathbb{R}.$

Beispiel 3. Filtration \mathfrak{F} beschreibt den Informationsverlauf in einem Finanzmarkt, alle "Aktionen" zur Zeit $t \in I$ müssen \mathfrak{F}_t -meßbar sein. Sinnvolle Forderung: Preisprozeß X adaptiert zu \mathfrak{F} , d.h. $\mathfrak{F}_t^X \subset \mathfrak{F}_t$ für alle $t \in I$.

Kontinuierliches Finanzmarktmodell für d Finanzgüter mit Zeithorizont $t_0 > 0$: Filtration $\mathfrak{F} = (\mathfrak{F}_t)_{t \in I}$ und dazu adaptierter \mathbb{R}^d -wertiger Prozeß $X = (X_t)_{t \in I}$, wobei $I = [0, t_0]$.

Handelsstrategie $H = (H_t)_{t \in I}$ in obigem Modell: \mathbb{R}^d -wertiger stochastischer Prozeß auf demselben Wahrscheinlichkeitsraum. Für $j \in \{1, \ldots, d\}$: $H_{t,j}$ Bestand an Finanzgut j zur Zeit $t \in I$. Sinnvolle Forderung: H zu \mathfrak{F} adaptiert.

Im folgenden sei $I = [0, \infty[$. Gegeben: Filtration $\mathfrak{F} = (\mathfrak{F}_t)_{t \in I}$ in \mathfrak{A} .

Definition 4. \mathfrak{F} rechtsseitig stetig, falls

$$\forall t \in I: \quad \mathfrak{F}_t = \bigcap_{\varepsilon > 0} \mathfrak{F}_{t+\varepsilon}.$$

Definition 5.

(i) X meßbar, falls

$$I \times \Omega \to S$$
, $(t, \omega) \mapsto X_t(\omega)$

 $(\mathfrak{B}(I)\otimes\mathfrak{A})$ -S-meßbar ist.

(ii) X progressiv meßbar (bzgl. \mathfrak{F}), falls für jedes $t \geq 0$ die Abbildung

$$[0,t] \times \Omega \to S$$
, $(s,\omega) \mapsto X_s(\omega)$

 $(\mathfrak{B}([0,t])\otimes\mathfrak{F}_t)$ -S-meßbar ist.

Bemerkung 4. Klar: progressiv meßbar \Rightarrow meßbar und adaptiert⁷.

 $^{^5}$ Analog mit anderen Pfadräumen, etwa $\Omega_2=C([0,t])$ und $\mathfrak{A}_2=\mathfrak{B}(\Omega_2)$. Siehe Prop. II.4.

⁶Notation $\mathfrak{S}^{[0,t]} = \bigotimes_{s \in [0,t]} \mathfrak{S}$.

 $^{^{7}}$ Ferner: meßbar und adaptiert ⇒ Existenz einer progressiv meßbaren Modifikation, siehe Karatzas, Shreve (1999, p. 5).

Kurz: X stetig, falls alle Pfade von X stetig sind. Analog für rechtsseitige und linksseitige Stetigkeit.

Proposition 2.

X adaptiert und rechtsseitig (linksseitig) stetig \Rightarrow X progressiv meßbar.

Beweis. Im Falle rechtsseitiger Stetigkeit. Fixiere t > 0, setze $I_0^{(n)} = \{0\}$ und $I_k^{(n)} = [(k-1)/2^n \cdot t, k/2^n \cdot t]$ für $n \in \mathbb{N}$ und $k = 1, \ldots, 2^n$. Definiere

$$X_s^{(n)}(\omega) = X_{k/2^n \cdot t}(\omega), \quad \text{falls } s \in I_k^{(n)}.$$

Dann folgt für alle $\omega \in \Omega$ und $s \in [0, t]$

$$\lim_{n \to \infty} X_s^{(n)}(\omega) = X_s(\omega).$$

Ferner gilt für $B \in \mathfrak{S}$

$$\begin{split} \{(s,\omega) \in [0,t] \times \Omega : X_s^{(n)}(\omega) \in B\} &= \bigcup_{k=0}^{2^n} \{(s,\omega) \in I_k^{(n)} \times \Omega : X_{k/2^n \cdot t}(\omega) \in B\} \\ &= \bigcup_{k=0}^{2^n} \left(I_k^{(n)} \times \{X_{k/2^n \cdot t} \in B\} \right) \in \mathfrak{B}([0,t]) \otimes \mathfrak{F}_t. \end{split}$$

Definition 6. X cadlag⁸ Prozeß, falls jeder Pfad in jedem Punkt $t \geq 0$ rechtsseitig stetig ist und in jedem Punkt t > 0 einen linksseitigen Grenzwert besitzt.

1.2 Stoppzeiten

Gegeben: Prozeß $X=(X_t)_{t\in I}$ auf Wahrscheinlichkeitsraum (Ω,\mathfrak{A},P) mit Filtration $\mathfrak{F}=(\mathfrak{F}_t)_{t\in I}$. Betrachte Abbildungen $T:\Omega\to I\cup\{\infty\}$.

Definition 7.

(i) T Stoppzeit (bzgl. \mathfrak{F}), falls

$$\forall t \in I : \{T < t\} \in \mathfrak{F}_t.$$

(ii) T optionale Zeit (bzgl. \mathfrak{F}), falls

$$\forall t \in I : \{T < t\} \in \mathfrak{F}_t.$$

Im folgenden sei $I = [0, \infty[$.

⁸Continu à droite, limites à gauche.

Bemerkung 5. Betrachte die kanonische Filtration \mathfrak{F}^X . Genau dann ist T Stoppzeit bzgl. \mathfrak{F}^X , wenn für jedes $t \in I$ eine Menge $B \in \mathfrak{S}^{[0,t]}$ mit

$$\{T \le t\} = \{\omega \in \Omega : X_{\cdot}(\omega)|_{[0,t]} \in B\}$$

existiert, siehe Bemerkung 3.

Beispiel 4. T Verkaufsstrategie für eine Aktie oder Ausübungsstrategie für amerikanische Option. Letztere gibt dem Inhaber der Option das Recht, innerhalb eines Zeitraumes $[0, t_0]$ ein Basisgut (etwa eine Aktie) zu einem festgelegten Basispreis zu kaufen (Call) bzw. zu verkaufen (Put). Sinnvolle Forderung: T Stoppzeit.

Proposition 3.

T Stoppzeit \Rightarrow T optionale Zeit.

Hier gilt "⇔" im Falle einer rechtsseitig stetigen Filtration.

Beweis. $,\Rightarrow$ "

$$\{T < t\} = \bigcup_{n=1}^{\infty} \underbrace{\{T \le t - 1/n\}}_{\in \mathfrak{F}_{t-1/n}} \in \mathfrak{F}_t.$$

" \Leftarrow " Für jedes $m \in \mathbb{N}$

$$\{T \le t\} = \bigcap_{n=m}^{\infty} \underbrace{\{T < t+1/n\}}_{\in \mathfrak{F}_{t+1/n}} \in \mathfrak{F}_{t+1/m}.$$

Mit der Stetigkeitsannahme folgt $\{T \leq t\} \in \mathfrak{F}_t$.

Proposition 4. Mit S, T, T_1, \ldots sind auch S+T und $\sup_{n\in\mathbb{N}} T_n$ Stoppzeiten bzgl. \mathfrak{F} . Im Falle einer rechtsseitig stetigen Filtration gilt dies auch für $\inf_{n\in\mathbb{N}} T_n$.

Beweis. Für die Summe. Es gilt

$$\{S+T>t\}$$

$$= \underbrace{\{S=0,T>t\}}_{\in \mathfrak{F}_t} \cup \{0 < S < t, S+T>t\} \cup \underbrace{\{S=t,T>0\}}_{\in \mathfrak{F}_t} \cup \underbrace{\{S>t\}}_{\in \mathfrak{F}_t}$$

sowie

$$\{0 < S < t, S + T > t\} = \bigcup_{r \in \mathbb{Q} \cap]0, t[} \underbrace{\{r < S < t, T > t - r\}}_{\in \mathfrak{F}_t} \in \mathfrak{F}_t.$$

Definition 8. Eintrittszeit in $\Gamma \in \mathfrak{B}(\mathbb{R}^d)$:

$$H_{\Gamma}(\omega) = \inf\{t \in I : X_t(\omega) \in \Gamma\}.$$

Beispiel 5. Verkaufe Aktie, sobald erstmals der Preis a erreicht oder überschritten ist, also $\Gamma = [a, \infty[$ im Falle d = 1.

⁹Wie üblich: $\inf \emptyset = \infty$.

Proposition 5. Sei X zu \mathfrak{F} adaptiert. Dann

- (i) X rechtsseitig stetig \wedge Γ offen \Rightarrow H_{Γ} optionale Zeit.
- (ii) X stetig \wedge Γ abgeschlossen \Rightarrow H_{Γ} Stoppzeit.

Beweis. ad (i): Es gilt

$$\{H_{\Gamma} < t\} = \bigcup_{s \in [0,t[} \{X_s \in \Gamma\} = \bigcup_{s \in \mathbb{Q} \cap [0,t[} \underbrace{\{X_s \in \Gamma\}}_{\in \mathfrak{F}_s} \in \mathfrak{F}_t.$$

ad (ii): Übung 1.4.b).

Gegeben: Stoppzeit T.

Definition 9. σ -Algebra der T-Vergangenheit:

$$\mathfrak{F}_T = \{ A \in \mathfrak{A} : \forall \ t \in I : A \cap \{ T \le t \} \in \mathfrak{F}_t \}.$$

Bemerkung 6. Klar: \mathfrak{F}_T ist σ -Algebra und T ist \mathfrak{F}_T - $\mathfrak{B}(I \cup \{\infty\})$ -meßbar.

Betrachte den Prozeß X zur Stoppzeit T,

$$X_T: \{T < \infty\} \to S, \qquad X_T(\omega) := X_{T(\omega)}(\omega),$$

und den gestoppten Prozeß¹⁰

$$(X_{T\wedge t})_{t\in I}$$
.

Proposition 6. Sei X progressiv meßbar. Dann

- (i) X_T ist \mathfrak{F}_T - \mathfrak{S} -meßbar.
- (ii) $(X_{T \wedge t})_{t \in I}$ ist progressiv meßbar.

Beweis. ad (ii): Fixiere t > 0, setze $\mathfrak{B} = \mathfrak{B}([0,t])$. Die Abbildung

$$[0,t] \times \Omega \to [0,t] \times \Omega, \quad (s,\omega) \mapsto (T(\omega) \wedge s,\omega)$$

ist $\mathfrak{B} \otimes \mathfrak{F}_t$ - $\mathfrak{B} \otimes \mathfrak{F}_t$ -meßbar¹¹. Die Abbildung

$$[0,t] \times \Omega \to S, \quad (z,\omega) \mapsto X_z(\omega)$$

ist n.V. $\mathfrak{B}\otimes\mathfrak{F}_t$ - \mathfrak{S} -meßbar. Betrachte die Komposition.

ad (i): Es gilt

$$\{X_T \in B\} \cap \{T \le t\} = \underbrace{\{X_{T \land t} \in B\}}_{\in \mathfrak{F}_t \text{ wg. (ii)}} \cap \underbrace{\{T \le t\}}_{\in \mathfrak{F}_t} \in \mathfrak{F}_t$$

für
$$B \in \mathfrak{S}$$
.

 $^{^{10}\}mathrm{Notation}\,\wedge$ für min.

 $^{^{11}\{}T \land s \le u\} = [0, t] \times \{T \le u\} \cup [0, u] \times \Omega.$

2 Der Poisson-Prozeß

Betrachte Folge $(T_i)_{i\in\mathbb{N}}$ von iid. Zufallsvariablen auf $(\Omega, \mathfrak{A}, P)$, jeweils exponentialverteilt¹² mit Parameter $\lambda > 0$. Setze $S_0 = 0$ und $S_n = \sum_{i=1}^n T_i$ für $n \in \mathbb{N}$. Definiere

$$N_t = \max\{n \in \mathbb{N}_0 : S_n \le t\}.$$

Klar: $P(\bigcup_{i=1}^{\infty} \{T_i \leq 0\}) = 0$ und¹³ $P(\{\sup_{n \in \mathbb{N}} S_n < \infty\}) = 0$. OBdA: die komplementären Eigenschaften gelten auf ganz Ω .

Im folgenden $I = [0, \infty[$.

Definition 10. $X = (X_t)_{t \in I}$ Poisson-Proze β mit Intensität $\lambda > 0$ bzgl. Filtration $\mathfrak{F} = (\mathfrak{F}_t)_{t \in I}$, falls¹⁴

- (i) X cadlag Prozeß mit Werten in \mathbb{N}_0 ,
- (ii) X adaptiert an \mathfrak{F} ,
- (iii) $X_0 = 0$,
- (iv) für $0 \le s < t$ ist $X_t X_s$
 - (a) unabhängig von \mathfrak{F}_s ,
 - (b) Poisson-verteilt¹⁵ mit Parameter $\lambda(t-s)$.

Satz 1. $(N_t)_{t\in I}$ ist Poisson-Prozeß mit Intensität λ bzgl. $(\mathfrak{F}_t^N)_{t\in I}$.

Klar: es gilt (i)-(iii). Der Beweis von (iv) ergibt sich mit dem folgenden Lemma 2.

Lemma 1. Für $0 \le s < t$ gilt

$$P(\{S_{N_s+1} > t\} \mid \mathfrak{F}_s^N) = \exp(-\lambda(t-s)).$$

Beweis. Sei $A\in \mathfrak{F}^N_s$ und t>s. Zu zeigen:

$$P(\{S_{N_s+1} > t\} \cap A) = \exp(-\lambda(t-s)) \cdot P(A).$$

Für $n \in \mathbb{N}_0$ existiert $B \in \sigma(\{T_1, \dots, T_n\})$ mit

$$A \cap \{N_s = n\} = B \cap \{N_s = n\},$$

 $^{^{12}}$ Für $t \geq 0$: $P(\{T_i \leq t\}) = 1 - \exp(-\lambda t)$; charakterisierende Eigenschaft (Gedächtnislosigkeit): $P(\{T_i \geq t\} \mid \{T_i \geq s\}) = P(\{T_i \geq t - s\})$ für $0 \leq s < t$.

¹³Starkes Gesetz der großen Zahlen: $S_n/n \to 1/\lambda$ P-f.s.

 $^{^{14}}$ Im folgenden oft kurz X = Y oder $X \ge Y$, falls diese Eigenschaften f.s. gelten. Ebenso identifizieren wir Abbildungen, die f.s. übereinstimmen.

¹⁵Für $k \in \mathbb{N}_0$: $P(\{X_t - X_s = k\}) = (\lambda(t - s))^k / k! \cdot \exp(-\lambda(t - s))$.

siehe Bemerkung 3. Klar: T_{n+1} und $(S_n, 1_B)$ unabhängig. Somit

$$P(\{S_{n+1} > t\} \cap A \cap \{N_s = n\}) = P(\{T_{n+1} + S_n > t\} \cap B \cap \{S_n \le s\})$$

$$= \int_{t-s}^{\infty} P(\{S_n > t - u\} \cap B \cap \{S_n \le s\}) \cdot \lambda \exp(-\lambda u) du$$

$$= \exp(-\lambda (t - s)) \cdot \int_{0}^{\infty} P(\{S_n > s - u\} \cap B \cap \{S_n \le s\}) \cdot \lambda \exp(-\lambda u) du$$

$$= \exp(-\lambda (t - s)) \cdot P(\{S_{n+1} > s\} \cap \{S_n \le s\} \cap B)$$

$$= \exp(-\lambda (t - s)) \cdot P(A \cap \{N_s = n\}).$$

Jetzt Summation über $n \in \mathbb{N}_0$.

Lemma 2. Für $0 \le s < t, A \in \mathfrak{F}_s^N$ und $k \in \mathbb{N}_0$ gilt

$$P(A \cap \{N_t - N_s = k\}) = P(A) \cdot \frac{(\lambda(t-s))^k}{k!} \exp(-\lambda(t-s)).$$

Beweis. Sei $k \in \mathbb{N}$ und $n \in \mathbb{N}_0$. Bezeichne mit φ_k die Dichte von

$$Y_k = \sum_{\ell=n+2}^{n+k+1} T_\ell.$$

Wie oben ergibt sich

$$z := P(A \cap \{N_t - N_s \le k\} \cap \{N_s = n\}) = P(B \cap \{S_{n+k+1} > t\} \cap \{N_s = n\})$$

$$= P(B \cap \{N_s = n\} \cap \{S_{n+1} + Y_k > t\})$$

$$= \int_0^\infty \underbrace{P(B \cap \{N_s = n\} \cap \{S_{n+1} + u > t\})}_{=:h(u)} \cdot \varphi_k(u) du.$$

Weiter

$$\int_{t-s}^{\infty} h(u) \cdot \varphi_k(u) \, du = P(B \cap \{N_s = n\}) \cdot P(\{Y_k \ge t - s\}),$$

und der Beweis von Lemma 1 zeigt

$$\int_0^{t-s} h(u) \cdot \varphi_k(u) \, du = \int_0^{t-s} P(B \cap \{N_s = n\}) \cdot \exp(-\lambda(t - u - s)) \cdot \varphi_k(u) \, du.$$

Verwende¹⁶

$$\varphi_k(u) = \frac{\lambda^k u^{k-1}}{(k-1)!} \cdot \exp(-\lambda u)$$

und

$$P(\lbrace Y_k > u \rbrace) = \sum_{j=0}^{k-1} \frac{(\lambda u)^j}{j!} \cdot \exp(-\lambda u)$$

zum Nachweis von

$$z = P(A \cap \{N_s = n\}) \cdot \sum_{i=0}^{k} \frac{(\lambda(t-s))^j}{j!} \exp(-\lambda(t-s)).$$

Jetzt Summation über $n \in \mathbb{N}$ etc.

 $^{^{16}}Y_k$ ist Gamma-verteilt mit Parameter (λ, k) .

Proposition 7. Die kanonische Filtration $(\mathfrak{F}_t^N)_{t\in I}$ ist rechtsseitig stetig.

Beweis. Wesentlich: die Pfade von N sind lokal rechtsseitig konstant. Siehe Protter (1990, p. 16) für allgemeines Ergebnis für Zählprozesse.

Obige Konstruktion des Poisson-Prozesses ist universell. Es gibt verteilungsfreie Charakterisierungen des Poisson-Prozesses. Siehe Gänssler, Stute (1977, Kap. VII.5).

Anwendungen des Poisson-Prozesses: z. Bsp. Warteschlangentheorie, Finanzmathematik, Versicherungsmathematik. Ausblick: Punktprozesse in \mathbb{R}^d .

3 Martingale

Gegeben: Filtration $\mathfrak{F} = (\mathfrak{F}_t)_{t \in I}$ und adaptierter reellwertiger Prozeß $X = (X_t)_{t \in I}$ auf $(\Omega, \mathfrak{A}, P)$ mit

$$\forall t \in I : E(|X_t|) < \infty.$$

Kurzschreibweise: $(X_t, \mathfrak{F}_t)_{t \in I}$, falls X an \mathfrak{F} adaptiert.

Definition 11. $(X_t, \mathfrak{F}_t)_{t \in I}$ Submartingal, falls

$$\forall s, t \in I : \quad s < t \implies X_s \le E(X_t \mid \mathfrak{F}_s).$$

Supermartingal: $,\geq$ ", Martingal ,=".

Beispiel 6. Für einen Poisson-Prozeß $(X_t, \mathfrak{F}_t)_{t \in I}$ mit Intensität $\lambda > 0$ und $0 \le s < t$ gilt

$$E(X_t \mid \mathfrak{F}_s) = E(X_t - X_s \mid \mathfrak{F}_s) + E(X_s \mid \mathfrak{F}_s) = E(X_t - X_s) + X_s = \lambda(t - s) + X_s.$$

Also liegt ein Submartingal vor.

Definiere einen kompensierten Poisson-Prozeß durch

$$M_t = X_t - \lambda t$$
.

Dann ist $(M_t, \mathfrak{F}_t)_{t \in I}$ ein Martingal.

Die Martingaltheorie im kontinuierlichen Fall $I = [0, \infty[$ wird oft unter Rückgriff auf den vorab betrachteten diskreten Fall entwickelt. Wir diskutieren einige Elemente dieser Theorie.

3.1 Martingale in diskreter Zeit

Zunächst sei $I = \mathbb{N}_0$.

Beispiel 7. Cox-Ross-Rubinstein Modell: einfaches Modell für Aktienkurs zu Zeiten $t \in \mathbb{N}_0$. Wähle

$$A_0 > 0$$
, $0 , $0 < d < u$,$

und betrachte $(Y_t)_{t\in\mathbb{N}}$ iid. mit

$$P({Y_t = u}) = p = 1 - P({Y_t = d}).$$

Definiere $\mathfrak{F}_0 = \{\emptyset, \Omega\}$ und

$$A_t = A_0 \cdot \prod_{s=1}^t Y_s, \qquad \mathfrak{F}_t = \sigma(\{Y_1, \dots, Y_t\})$$

für $t \in \mathbb{N}$. Klar: $\mathfrak{F} = \mathfrak{F}^A$. Für ganzzahlige $0 \leq s < t$

$$E(A_t \mid \mathfrak{F}_s) = A_s \cdot E\left(\prod_{k=s+1}^t Y_k\right) = A_s \cdot E(Y_1)^{t-s} = (pu + (1-p)d)^{t-s} \cdot A_s.$$

Also

$$(A_t, \mathfrak{F}_t)_{t \in \mathbb{N}_0}$$
 Submartingal \Leftrightarrow $E(Y_1) \geq 1$

und

$$(A_t, \mathfrak{F}_t)_{t \in \mathbb{N}_0}$$
 Martingal \Leftrightarrow $d < 1 < u \land p = \frac{1-d}{u-d}$.

Wir sehen später: ein geeigneter Grenzübergang liefert die geometrische Brownsche Bewegung; auf diesem stochastischen Finanzmarktmodell basiert die Black-Scholes-Formel zur Bewertung europäischer Optionen.

Frage: Gibt es im Martingal-Fall eine Stoppzeit (Verkaufsstrategie) T mit $E(A_T) > A_0$?

Die folgenden Sätze 2, 3 und 5 sind Varianten des *optional sampling theorems*. Beweise der Sätze 2 und 3 findet man im Skript "Probability Theory".

Satz 2.

$$(X_t, \mathfrak{F}_t)_{t \in \mathbb{N}_0}$$
 Martingal \Leftrightarrow $\forall T$ beschränkte Stoppzeit : $E(X_T) = E(X_0)$.

Satz 3. Sei $(X_t, \mathfrak{F}_t)_{t \in \mathbb{N}_0}$ Martingal und T Stoppzeit mit

$$P(\{T < \infty\}) = 1 \land E(|X_T|) < \infty \land \lim_{t \to \infty} \int_{\{T > t\}} |X_t| dP = 0.$$

Dann

$$E(X_T) = E(X_0).$$

Die Struktur der Submartingale ergibt sich wie folgt.

Satz 4 (Doobsche Zerlegung). Für

$$M_t = \sum_{s=1}^t (X_s - E(X_s \mid \mathfrak{F}_{s-1})) + X_0, \qquad A_t = \sum_{s=1}^t (E(X_s \mid \mathfrak{F}_{s-1}) - X_{s-1})$$

gilt

- (i) $X_t = M_t + A_t$,
- (ii) $(M_t, \mathfrak{F}_t)_{t \in \mathbb{N}_0}$ ist Martingal,
- (iii) $(X_t, \mathfrak{F}_t)_{t \in \mathbb{N}_0}$ Submartingal \Leftrightarrow $(A_t)_{t \in \mathbb{N}_0}$ P-f.s monoton wachsend.

Beweis. Nachrechnen. \Box

Satz 5. Sei $(X_t, \mathfrak{F}_t)_{t \in \mathbb{N}_0}$ Submartingal. Für beschränkte Stoppzeiten $S \leq T$ gilt¹⁷

$$X_S \leq E(X_T \mid \mathfrak{F}_S)$$

und somit

$$E(X_S) \leq E(X_T)$$
.

Im Martingal-Fall gilt jeweils "=".

Beweis. Zunächst der Submartingalfall. Für Zufallsvariablen X,Y auf (Ω,\mathfrak{A},P) mit $E(|X|),\,E(|Y|)<\infty$ gilt

$$X \le Y$$
 \Leftrightarrow $\forall A \in \mathfrak{A} : \int_A X \, dP \le \int_A Y \, dP.$

Ferner: X_S und $E(X_T | \mathfrak{F}_S)$ sind \mathfrak{F}_S -meßbar. Also ist zu zeigen

$$\forall A \in \mathfrak{F}_S: \int_A X_S dP \leq \underbrace{\int_A E(X_T \mid \mathfrak{F}_S) dP}_{=\int_A X_T dP}.$$

Verwende die Doobsche Zerlegung X = M + A. Wg. der Monotonie von A

$$A_S \leq A_T$$
.

Sei $A \in \mathfrak{F}_S$. Wir zeigen

$$\int_A M_S \, dP = \int_A M_T \, dP.$$

Setze

$$R = S \cdot 1_A + T \cdot 1_{\Omega \setminus A}.$$

Da $\Omega \setminus A \in \mathfrak{F}_S \subset \mathfrak{F}_T$, folgt

$$\{R \le t\} = \underbrace{\{S \le t\} \cap A}_{\in \mathfrak{F}_t} \cup \underbrace{\{T \le t\} \cap (\Omega \setminus A)}_{\in \mathfrak{F}_t} \in \mathfrak{F}_t,$$

so daß R eine beschränkte Stoppzeit ist. Satz 2 liefert

$$E(M_R) = E(M_0) = E(M_T).$$

Klar

$$E(M_R) = E(M_S \cdot 1_A) + E(M_T \cdot 1_{\Omega \setminus A}).$$

Im Martingalfall betrachte man X und -X.

 $^{^{17}}$ Beachte, daß X_S \mathfrak{F}_S -meßbar ist. Vgl. Proposition 6 im kontinuierlichen Fall.

Gegeben: $(X_t, \mathfrak{F}_t)_{t \in I}$ mit $I = \{t_0, \ldots, t_n\}$ für $t_0 < \cdots < t_n$ sowie a < b. Definiere Stoppzeiten

$$\begin{split} T_1 &= \inf\{t \in I : X_t \leq a\}, \\ T_2 &= \inf\{t \in I : X_t \geq b, \ t > T_1\}, \\ &\vdots \\ T_{2k+1} &= \inf\{t \in I : X_t \leq a, \ t > T_{2k}\}, \\ T_{2k+2} &= \inf\{t \in I : X_t \geq b, \ t > T_{2k+1}\}, \\ &\vdots \\ \end{split}$$

sowie die Anzahl der $\ddot{U}berquerungen~(Upcrossings)$ des Intervalls [a,b] von unten nach oben

$$U_I^X(a,b) = \begin{cases} 0, & \text{falls } T_2 = \infty, \\ \max\{k \in \mathbb{N} : T_{2k} \le t_n\}, & \text{sonst.} \end{cases}$$

Satz 6 (Upcrossing-Inequality). Für jedes Submartingal $(X_t, \mathfrak{F}_t)_{t \in I}$ gilt

$$E(U_I^X(a,b)) \le \frac{E((X_{t_n}-a)^+) - E((X_{t_0}-a)^+)}{b-a}.$$

Beweis. O.B.d.A. a=0 und $X\geq 0$ aufgrund der Jensenschen Ungleichung. Definiere Stoppzeiten $S_0=t_0$ und $S_i=T_i\wedge t_n$ für $i\in\mathbb{N}$. Dann

$$X_{t_n} - X_{t_0} = \sum_{j=1}^{\infty} (X_{S_{2j}} - X_{S_{2j-1}}) + \sum_{j=0}^{\infty} (X_{S_{2j+1}} - X_{S_{2j}})$$

sowie

$$\sum_{j=1}^{\infty} (X_{S_{2j}} - X_{S_{2j-1}}) \ge b \cdot U_I^X(0, b).$$

Satz 5 sichert

$$E(X_{S_{2j+1}}) \ge E(X_{S_{2j}}).$$

Fazit

$$E(X_{t_n}) - E(X_{t_0}) \ge b \cdot E(U_I^X(0, b)).$$

Satz 7 (Submartingal-Ungleichungen). Für jedes Submartingal $(X_t, \mathfrak{F}_t)_{t \in I}$ und $\mu > 0$ gilt

$$P(\{\max_{i=0,\dots,n} X_{t_i} \ge \mu\}) \le 1/\mu \cdot E(X_{t_n}^+),$$

$$P(\{\min_{i=0,\dots,n} X_{t_i} \le -\mu\}) \le 1/\mu \cdot (E(X_{t_n}^+) - E(X_{t_0})).$$

Beweis. Siehe Chung (1974, Theorem 9.4.1).

Schließlich noch zwei Martingalkonvergenzsätze mit $I = -\mathbb{N}$ bzw. $I = \mathbb{Z}$.

Proposition 8. Gegeben: Submartingal¹⁸ $(X_t, \mathfrak{F}_t)_{t \in \mathbb{N}}$ mit

$$\inf_{t \in -\mathbb{N}} E(X_t) > -\infty. \tag{1}$$

Dann existiert $X_{-\infty} \in L_1(\Omega, \mathfrak{A}, P)$, so daß

$$\lim_{t \to -\infty} X_t = X_{-\infty} \qquad P\text{-f.s. und in } L_1.$$

Beweis. Ohne Verwendung von (1) sichert Satz 6 die Existenz einer Zufallsvariablen $X_{-\infty}$ mit Werten in $\mathbb{R} \cup \{\pm \infty\}$, so daß $\lim_{t \to -\infty} X_t = X_{-\infty}$ P-f.s., vgl. Übung 3.3. Mit (1) und Satz 7 zeigt man, daß $X_{-\infty}$ P-f.s. endlich ist, und die gleichgradige Integrierbarkeit von $(X_t)_{t \in -\mathbb{N}}$, siehe Chung (1974, Theorem 9.4.7).

Proposition 9. Gegeben: Filtration $(\mathfrak{F}_t)_{t\in\mathbb{Z}}$ und Zufallsvariable Y auf (Ω,\mathfrak{A},P) mit $E(|Y|) < \infty$. In $L_1(\Omega,\mathfrak{A},P)$ und P-f.s. gilt

$$\lim_{t \to \infty} E(Y \mid \mathfrak{F}_t) = E\left(Y \mid \sigma\left(\bigcup_{t \in \mathbb{Z}} \mathfrak{F}_t\right)\right), \qquad \lim_{t \to -\infty} E(Y \mid \mathfrak{F}_t) = E\left(Y \mid \bigcap_{t \in \mathbb{Z}} \mathfrak{F}_t\right).$$

Beweis. Siehe Chung (1974, Thm. 9.4.8).

3.2 Martingale in stetiger Zeit

Im folgenden sei $I = [0, \infty[$.

Satz 8 (Optional Sampling Thm.). Für jedes rechtsseitig stetige Martingal $(X_t, \mathfrak{F}_t)_{t \in I}$ gilt

$$\forall T \text{ beschränkte Stoppzeit}: E(X_T) = E(X_0).$$

Beweis. Gelte $T(\omega) \leq N$ für alle $\omega \in \Omega$. Für $n \in \mathbb{N}$ sei T_n definiert durch

$$T_n(\omega) = k/2^n \quad \Leftrightarrow \quad T(\omega) \in [(k-1)/2^n, k/2^n].$$

Für $t \in [(k-1)/2^n, k/2^n]$ zeigt Proposition 3

$$\{T_n \le t\} = \{T_n \le (k-1)/2^n\} = \{T < (k-1)/2^n\} \in \mathfrak{F}_{(k-1)/2^n} \subset \mathfrak{F}_t,$$

d.h. T_n ist Stoppzeit.

Für alle $\omega \in \Omega$:

$$T_n(\omega) \leq N+1 \quad \wedge \quad \lim_{n \to \infty} T_n(\omega) \searrow T(\omega).$$

Somit wegen der rechtsseitigen Stetigkeit:

$$\lim_{n \to \infty} X_{T_n}(\omega) = X_T(\omega). \tag{2}$$

Satz 5 zeigt

$$E(X_{N+1} \mid \mathfrak{F}_{T_n}) = X_{T_n}.$$

¹⁸Sogenanntes inverses Submartingal.

Also ist $\{X_{T_n}: n \in \mathbb{N}\}$ gleichgradig integrierbar, siehe Übung 3.1. Mit (2) folgt

$$\lim_{n\to\infty} E(X_{T_n}) = E(X_T).$$

Schließlich zeigt Satz 2

$$\forall n \in \mathbb{N} : E(X_{T_n}) = E(X_0).$$

Die folgenden Begriffe und Ergebnisse sind grundlegend bei der Einführung des stochastischen Integrals.

Definition 12. \mathfrak{F} erfüllt die *üblichen Voraussetzungen*, falls

- (i) \mathfrak{F} rechtsseitig stetig,
- (ii) $\{A \subset \Omega : \exists B \in \mathfrak{A} : A \subset B \land P(B) = 0\} \subset \mathfrak{F}_0$.

Satz 9. Erfüllt seien

- (i) $(X_t, \mathfrak{F}_t)_{t \in I}$ Submartingal,
- (ii) $t \mapsto E(X_t)$ rechtsseitig stetig,
- (iii) die üblichen Voraussetzungen.

Dann existiert eine cadlag Modifikation Y von X, so daß $(Y_t, \mathfrak{F}_t)_{t \in I}$ ein Submartingal ist.

Beweis. Satz 7 sichert die Existenz von $B \in \mathfrak{A}$ mit P(B) = 1 und

$$\forall \ \omega \in B \ \forall \ n \in \mathbb{N} : \sup_{t \in [0,n] \cap \mathbb{Q}} |X_t(\omega)| < \infty.$$

Details bei Yeh (1995, Prop. 9.1.1). Definiere

$$U_n^X(a,b) = \sup\{U_J^X(a,b): J \subset [0,n] \cap \mathbb{Q} \text{ endlich}\}$$

sowie

$$C_n(a,b) = \{U_n^X(a,b) < \infty\},$$
 $C = \bigcap_{n \in \mathbb{N}} \bigcap_{a < b, a,b \in \mathbb{Q}} C_n(a,b).$

Nach Satz 6 und dem Satz von der monotonen Konvergenz gilt P(C) = 1. Für $\omega \in B \cap C$ existieren die Grenzwerte

$$X_t^{\mathrm{r}}(\omega) = \lim_{s \searrow t, s \in \mathbb{Q}} X_s(\omega)$$

für jedes $t \geq 0$. Setze $Y_t(\omega) = X^r(t)(\omega)$ für $\omega \in B \cap C$ und andernfalls $Y_t(\omega) = 0$. Man verifiziert, daß Y ein cadlag Prozeß ist. Die üblichen Voraussetzungen sichern, daß Y zu \mathfrak{F} adaptiert ist.

Sei $s \in I$. Wähle $s_n \in \mathbb{Q}$ mit $s_n \setminus s$. Für $A \in \mathfrak{F}_s$

$$\int_{A} X_{s} dP \le \int_{A} E(X_{s_{n}} \mid \mathfrak{F}_{s}) dP = \int_{A} X_{s_{n}} dP.$$

Die $L_1\text{-}Konvergenz$ gem. Proposition 8 liefert $E(|Y_s|)<\infty$ und

$$\lim_{n \to \infty} \int_A X_{s_n} dP = \int_A Y_s dP, \tag{3}$$

so daß

$$X_s \le Y_s. \tag{4}$$

Gelte $s_n < t$. Gem. (4) folgt

$$E(Y_t \mid \mathfrak{F}_{s_n}) \ge E(X_t \mid \mathfrak{F}_{s_n}) \ge X_{s_n}.$$

Zusammen mit Proposition 9 und der rechtsseitigen Stetigkeit von \mathfrak{F} ergibt sich

$$E(Y_t \mid \mathfrak{F}_s) = \lim_{n \to \infty} E(Y_t \mid \mathfrak{F}_{s_n}) \ge \lim_{n \to \infty} X_{s_n} = Y_s,$$

d.h. $(Y_t, \mathfrak{F}_t)_{t \in I}$ ist ein Submartingal.

Die rechtsseitige Stetigkeit von $s \mapsto E(X_s)$ und (3) liefern

$$E(X_s) = E(Y_s),$$

Mit (4) ergibt sich $Y_s = X_s$.

Definition 13. $(A_t, \mathfrak{F}_t)_{t \in I}$ wachsend, falls

- (i) $A_0 = 0$,
- (ii) A besitzt rechtsseitig stetige, monoton wachsende¹⁹ Pfade,
- (iii) $\forall t \in I : E(A_t) < \infty$.

Bemerkung 7. Wir integrieren erstmals bezüglich eines stochastischen Prozesses. Sei $(A_t, \mathfrak{F}_t)_{t\in I}$ wachsend und $(X_t)_{t\in I}$ meßbar. Dann sind die Lebesgue-Stieltjes Integrale²⁰

$$I_t^{\pm}(\omega) = \int_0^t X_s^{\pm}(\omega) \, dA_s(\omega), \qquad \omega \in \Omega,$$

für $t \in I$ wohldefiniert. Sei $(X_t, \mathfrak{F}_t)_{t \in I}$ progressiv meßbar und gelte

$$\forall \ \omega \in \Omega : I_t^{\pm}(\omega) < \infty.$$

Dann ist

$$I_t(\omega) = I_t^+(\omega) - I_t^-(\omega), \qquad \omega \in \Omega,$$

für $t \in I$ wohldefiniert, rechtsseitig stetig und progressiv meßbar.

 $^{^{19}}A_s(\omega) \leq A_t(\omega)$, falls $s \leq t$.

²⁰Identifiziere $A.(\omega)$ mit dem durch $\mu^{\omega}([0,s]) = A_s(\omega)$ definierten σ -endlichen Maß auf $\mathfrak{B}(I)$.

Beispiel 8. Der Poisson-Prozeß $(N_t, \mathfrak{F}_t^N)_{t \in I}$ ist wachsend. Setze

$$J_t(\omega) = \{S_n(\omega) : n \in \mathbb{N}\} \cap [0, t].$$

Dann gilt $\#J_t(\omega) = N_t(\omega) < \infty$ und

$$I_t(\omega) = \sum_{s \in J_t(\omega)} X_s(\omega).$$

Wir formulieren nun ein kontinuierliches Analogon der Doobschen Zerlegung.

Die Summe eines Martingals M und eines wachsenden Prozesses A (bzgl. derselben Filtration) ist ein Submartingal. Ist jedes Submartingal so darstellbar? Ist diese Darstellung eindeutig?

Beispiel 9. Sei $(X_t, \mathfrak{F}_t)_{t \in I}$ Poisson-Prozeß mit Intensität $\lambda > 0$. Dann

$$X_t = \underbrace{X_t - \lambda t}_{=M_t} + \underbrace{\lambda t}_{=A_t}.$$

Wir wissen: $(M_t, \mathfrak{F}_t)_{t \in I}$ ist ein Martingal. Klar: $(A_t, \mathfrak{F}_t)_{t \in I}$ ist wachsend.

Satz 10 (Doob-Meyer-Zerlegung). Erfüllt seien²¹

- (i) $(X_t, \mathfrak{F}_t)_{t \in I}$ stetiges Submartingal,
- (ii) $\forall t \in I : X_t \geq 0$,
- (iii) die üblichen Voraussetzungen.

Dann existiert ein stetiges Martingal $(M_t, \mathfrak{F}_t)_{t \in I}$ und ein stetiger wachsender Prozeß $(A_t, \mathfrak{F}_t)_{t \in I}$ mit

$$\forall t \in I \ \forall \ \omega \in \Omega : \ X_t(\omega) = M_t(\omega) + A_t(\omega).$$

Diese Zerlegung ist eindeutig bis auf Ununterscheidbarkeit.

Beweisskizze. Details bei Karatzas Shreve (1999, Chap. 1.4). Wir diskutieren die Existenz für $t \in [0, a]$ mit a > 0. Betrachte eine rechtsseitig stetige Modifikation $(Y_t)_{t \in [0, a]}$ des Submartingals

$$X_t - E(X_a \mid \mathfrak{F}_t), \qquad t \in [0, a],$$

gem. Satz²² 9. Für $n \in \mathbb{N}$ und $I^{(n)} = \{j/2^n \cdot a : j = 0, \dots, 2^n\}$ hat man die Doobsche Zerlegung

$$Y_t = M_t^{(n)} + A_t^{(n)}, t \in I^{(n)}.$$

Ein Kompaktheitsschluß, für den (ii) verwendet wird, zeigt: es ex. eine Teilfolge $(A_a^{(n_k)})_{k\in\mathbb{N}}$ von $(A_a^{(n)})_{n\in\mathbb{N}}$ sowie $Z\in L_1(\Omega,\mathfrak{A},P)$, so daß

$$\forall \xi \in L_{\infty}(\Omega, \mathfrak{A}, P) : \lim_{k \to \infty} E(\xi \cdot A_a^{(n_k)}) = E(\xi \cdot Z).$$

²¹Allgemeinere Fassung bei Karatzas, Shreve (1999).

²²Anwendbar wg. (i) und Proposition 8.

Betrachte rechtsseitig stetige Modifikationen $(M_t)_{t\in[0,a]}$ des Martingals

$$E(X_a - Z \mid \mathfrak{F}_t), \qquad t \in [0, a],$$

sowie $(A_t)_{t\in[0,a]}$ des Submartingals

$$Y_t + E(Z \mid \mathfrak{F}_t), \qquad t \in [0, a],$$

gem. Satz 9. Klar: $X_t = M_t + A_t$ und M ist ein Martingal. Zu zeigen bleibt die linksseitige Stetigkeit von A und M sowie die Monotonie von A; hier geht die Stetigkeit von X ein.

Im folgenden: \mathfrak{F} erfülle die üblichen Voraussetzungen. Kurz: Martingal statt Martingal bzgl. \mathfrak{F} . Gleichheit von Prozessen im Sinne der Ununterscheidbarkeit.

Definition 14. X quadratisch integrierbar, falls

$$\forall \ t \in I : E(X_t^2) < \infty.$$

Bez.: $\mathfrak{M}_2^c = \mathfrak{M}_2^c(\mathfrak{F})$ sei der Vektorraum aller stetigen, quadratisch integrierbaren Martingale mit $X_0 = 0$.

Bemerkung 8. Klar: für $X \in \mathfrak{M}_2^c$ ist $X^2 = (X_t^2)_{t \in I}$ stetiges Submartingal.

Definition 15. Quadratische Variation von $X \in \mathfrak{M}_2^c$ ist der²³ stetige, wachsende Prozeß $(A_t)_{t \in I}$ in der Doob-Meyer-Zerlegung

$$X_t^2 = M_t + A_t$$

von X^2 . Bez.: $\langle X \rangle_t = A_t$.

Vgl. Übung 2.3.b für den kompensierten Poisson-Prozeß.

Definition 16. Für $X, Y \in \mathfrak{M}_2^c$ heißt²⁴

$$\langle X, Y \rangle_t = \frac{1}{4} (\langle X + Y \rangle_t - \langle X - Y \rangle_t), \quad t \in I,$$

der Kreuz- $Variationsproze\beta$. X und Y heißen orthogonal, falls

$$\langle X, Y \rangle = 0.$$

Proposition 10. Für $X, Y \in \mathfrak{M}_2^c$ gilt

- (i) $\langle X, X \rangle = \langle X \rangle$,
- (ii) äquivalent sind
 - (a) XY Z ist Martingal $\wedge Z = A' A''$ mit A', A'' stetig, wachsend,
 - (b) $Z = \langle X, Y \rangle$,

²³Eindeutig bestimmt bis auf Ununterscheidbarkeit.

 $^{^{24} \}mbox{Polarisation}.$

- (iii) äquivalent sind
 - (a) X, Y orthogonal,
 - (b) XY Martingal,
 - (c) $E((X_t X_s) \cdot (Y_t Y_s) | \mathfrak{F}_s) = 0$ für alle $0 \le s < t$, ²⁵
- (iv) $\langle \cdot, \cdot \rangle$ ist symmetrisch und bilinear,
- (v) $\langle X, Y \rangle^2 \le \langle X \rangle \cdot \langle Y \rangle$.

Beweis. ad (i):

$$\langle X, X \rangle_t = \frac{1}{4} \langle 2X \rangle_t = \langle X \rangle_t.$$

ad (ii): "(b) \Rightarrow (a)": $(X+Y)^2 - \langle X+Y \rangle$ und $(X-Y)^2 - \langle X-Y \rangle$ sind Martingale, somit auch ihre Differenz

$$(X+Y)^2 - (X-Y)^2 - \langle X+Y \rangle + \langle X-Y \rangle = 4XY - 4\langle X,Y \rangle.$$

"(a) \Rightarrow (b)": siehe Karatzas, Shreve (1999, p. 31).

ad (iii): $(a) \Leftrightarrow (b)$ folgt aus (ii).

 $,(b) \Leftrightarrow (c)$ ".

$$E((X_t - X_s) \cdot (Y_t - Y_s) \mid \mathfrak{F}_s) = E(X_t Y_t + X_s Y_s - X_t Y_s - X_s Y_t \mid \mathfrak{F}_s)$$

= $E(X_t Y_t \mid \mathfrak{F}_s) - X_s Y_s$.

ad (iv): Symmetrie klar. Für $\alpha \in \mathbb{R}$ sind

$$(\alpha X) \cdot Y - \langle \alpha X, Y \rangle$$
 und $\alpha \cdot (XY) - \alpha \cdot \langle X, Y \rangle$

gem. (ii) Martingale. Mit (ii) folgt ebenfalls $\alpha \langle X, Y \rangle = \langle \alpha X, Y \rangle$. Beweis der Additivität analog.

ad (v): Folgt wie üblich aus (iv) und $\langle X \rangle_t \geq 0$.

Definition 17. Sei $\pi = \{t_0, \dots, t_m\}$ mit $0 = t_0 < \dots < t_m = t$ Zerlegung von [0, t]. Ferner sei $p \in]0, \infty[$. Dann heißt

$$V_t^{(p)}(X;\pi) = \sum_{k=1}^m |X_{t_k} - X_{t_{k-1}}|^p$$

p-te Variation von X auf [0,t] bzgl. π . Ferner heißt

$$\|\pi\| = \max_{k=1,\dots,m} (t_k - t_{k-1})$$

die Feinheit von π . Die durch

$$m_t(X;\delta)(\omega) = \sup\{|X_r(\omega) - X_s(\omega)| : r, s \in [0,t], |r-s| \le \delta\}$$

definierte Abbildung $m_t(X;\cdot)(\cdot):[0,t]\times\Omega\to[0,\infty]$ heißt Stetigkeitsmodul von X auf [0,t].

²⁵Inkremente sind bedingt "unkorreliert".

Bemerkung 9. Sei X stetig. Dann ist $m_t(X;\cdot)(\cdot)$ endlich und $m_t(X;\delta)$ ist \mathfrak{F}_t - $\mathfrak{B}(I)$ meßbar. Ferner

$$\forall \ \omega \in \Omega : \lim_{\delta \to 0} m_t(X; \delta)(\omega) = 0.$$

Satz 11. Gelte $\lim_{n\to\infty} \|\pi_n\| = 0$ für Folge von Zerlegungen π_n von [0,t] und sei $X \in \mathfrak{M}_2^c$. Dann

$$V_t^{(2)}(X;\pi_n) \stackrel{P\text{-stoch.}}{\to} \langle X \rangle_t.$$

Beweis.

1. Fall: X und $\langle X \rangle$ beschränkt auf [0,t]. Genauer

$$P\left(\bigcap_{s\in[0,t]} \{\max\{|X_s|,\langle X\rangle_s\} \le K\}\right) = 1.$$

Wir zeigen hier sogar L_2 -Konvergenz. Mit obigen Bezeichnungen gilt

$$E\left(V_t^{(2)}(X;\pi) - \langle X \rangle_t\right)^2 = E\left(\sum_{k=1}^m \underbrace{\left(X_{t_k} - X_{t_{k-1}}\right)^2 - \left(\langle X \rangle_{t_k} - \langle X \rangle_{t_{k-1}}\right)}_{=Y_k}\right)^2$$
$$= \sum_{k,\ell=1}^m E(Y_k \cdot Y_\ell).$$

Wir zeigen

$$\forall \ k \neq \ell : E(Y_k \cdot Y_\ell) = 0. \tag{5}$$

Für $0 \le s < t \le u < v$ gilt²⁶

$$E((X_v - X_u)^2 \mid \mathfrak{F}_t) = E(X_v^2 - X_u^2 \mid \mathfrak{F}_t)$$

$$= E(X_v^2 - \langle X \rangle_v - (X_u^2 - \langle X \rangle_u) \mid \mathfrak{F}_t) + E(\langle X \rangle_v - \langle X \rangle_u \mid \mathfrak{F}_t)$$

$$= E(\langle X \rangle_v - \langle X \rangle_u \mid \mathfrak{F}_t).$$

Somit für $k < \ell$ (und analog für $\ell < k$)

$$E(Y_k \cdot Y_\ell \mid \mathfrak{F}_{t_k}) = Y_k \cdot E(Y_\ell \mid \mathfrak{F}_{t_k}) = 0,$$

so daß (5) folgt.

Also

$$E\left(V_t^{(2)}(X;\pi) - \langle X \rangle_t\right)^2$$

$$= \sum_{k=1}^m E\left((X_{t_k} - X_{t_{k-1}})^2 - (\langle X \rangle_{t_k} - \langle X \rangle_{t_{k-1}})\right)^2$$

$$\leq 2\sum_{k=1}^m E\left((X_{t_k} - X_{t_{k-1}})^4 + (\langle X \rangle_{t_k} - \langle X \rangle_{t_{k-1}})^2\right)$$

$$\leq 2 \cdot E\left(V_t^{(4)}(X;\pi)\right) + 2 \cdot E\left(m_t(\langle X \rangle; ||\pi||) \cdot \langle X \rangle_t\right).$$

 $[\]overline{{}^{26}E(X_uX_v \mid \mathfrak{F}_t) = E(E(X_uX_v \mid \mathfrak{F}_u) \mid \mathfrak{F}_t)} = E(X_uE(X_v \mid \mathfrak{F}_u) \mid \mathfrak{F}_t) = E(X_u^2 \mid \mathfrak{F}_t).$

Es gilt

$$E\left(V_t^{(2)}(X;\pi)\right)^2 \le 6 \cdot K^4,$$

siehe Karatzas, Shreve (1999, Lemma 1.5.9). Ferner

$$V_t^{(4)}(X;\pi) \le m_t(X; \|\pi\|)^2 \cdot V_t^{(2)}(X;\pi)$$

und hiermit

$$E(V_t^{(4)}(X;\pi)) \le \left(E\left(V_t^{(2)}(X;\pi)\right)^2 \right)^{1/2} \cdot \left(E\left(m_t(X;\|\pi\|)^4\right) \right)^{1/2}$$

$$\le 3K^2 \cdot \left(E\left(m_t(X;\|\pi\|)^4\right) \right)^{1/2}.$$

Klar

$$m_t(X; \delta) \le 2K, \qquad m_t(\langle X \rangle; \delta) \le K.$$

Der Lebesguesche Grenzwertsatz und die Stetigkeit der Pfade sichern

$$\lim_{n \to \infty} E\left(V_t^{(2)}(X; \pi_n) - \langle X \rangle_t\right)^2 = 0.$$

2. Fall: keine Beschränktheitsvoraussetzungen. Rückführung auf 1. Fall (*Lokalisation*). Definiere

$$T_K = \inf\{t \in I : |X_t| \ge K \lor \langle X \rangle_t \ge K\}, \qquad K \in \mathbb{N}.$$

Proposition 5 zeigt, daß T_K Stoppzeit ist. Die gestoppten Prozesse

$$X_t^{(K)} = X_{T_K \wedge t}, \qquad t \in I,$$

und

$$X_{T_K \wedge t}^2 - \langle X \rangle_{T_K \wedge t}, \qquad t \in I,$$

sind beschränkte Martingale, siehe Übung 3.2. Die Eindeutigkeit der Doob-Meyer-Zerlegung liefert

$$\langle X \rangle_{T_K \wedge t} = \langle X^{(K)} \rangle_t.$$

Gemäß Fall 1.) gilt für festes $K \in \mathbb{N}$

$$\lim_{n \to \infty} E\left(V_t^{(2)}(X^{(K)}; \pi_n) - \langle X^{(K)} \rangle_t\right)^2 = 0.$$

Setze

$$B_n^{\varepsilon} = \{ |V_t^{(2)}(X; \pi_n) - \langle X \rangle_t | \ge \varepsilon \}, \qquad A_K = \{ T_K \le t \}.$$

Es gilt $\lim_{K\to\infty} T_K(\omega) = \infty$ für alle $\omega \in \Omega$ wegen der Stetigkeit der Pfade von X und $\langle X \rangle$, also

$$\lim_{K \to \infty} P(A_K) = 0.$$

Weiter

$$P(B_n^{\varepsilon}) = P(B_n^{\varepsilon} \cap A_K) + P(B_n^{\varepsilon} \setminus A_K)$$

$$\leq P(A_K) + P(\{|V_t^{(2)}(X^{(K)}; \pi_n) - \langle X^{(K)} \rangle_t| \geq \varepsilon\}),$$

und somit

$$\limsup_{n\to\infty} P(B_n^{\varepsilon}) \le P(A_K).$$

Abschließend: Die Wahl von p=2 bei der Variation ist angemessen für stetige, quadratisch integrierbare Martingale.

Satz 12. Sei $(X_t, \mathfrak{F}_t)_{t \in I}$ Prozeß mit stetigen Pfaden, p > 0 und L_t Zufallsvariable, so daß

$$V_t^{(p)}(X;\pi_n) \stackrel{P\text{-stoch.}}{\to} L_t$$

falls $\|\pi_n\| \to 0$. Dann gilt für q > p

$$V_t^{(q)}(X;\pi_n) \stackrel{P\text{-stoch.}}{\to} 0$$

 und^{27} für 0 < q < p

$$V_t^{(q)}(X;\pi_n) \cdot 1_{\{L_t>0\}} \stackrel{P\text{-stoch.}}{\longrightarrow} \infty \cdot 1_{\{L_t>0\}},$$

falls $\|\pi_n\| \to 0$.

Beweis. Übung 4.2.

Eine wichtige Konsequenz der Sätze 11 und 12: die Definition von stochastischen Integralen bzgl. stetiger quadratisch-integrierbarer Martingale X, etwa mit $\langle X \rangle_t > 0$ für alle t > 0, kann nicht pfadweise unter Rückgriff auf die deterministische Lebesgue-Stieltjes-Theorie erfolgen.

4 Der Kolmogorovsche Konsistenzsatz

Gegeben: Meßraum (S,\mathfrak{S}) und beliebige Menge $I \neq \emptyset$, sowie zunächst ein stochastischer Prozeß $X = (X_t)_{t \in I}$ auf $(\Omega, \mathfrak{A}, P)$ mit Zustandsraum (S, \mathfrak{S}) .

Für $\emptyset \neq J \subset I$ sei $X_J : \Omega \to S^J$ durch

$$(X_J(\omega))(t) = X_t(\omega)$$

für $\omega \in \Omega$ und $t \in J$ definiert.

Bemerkung 10. X_J ist \mathfrak{A} - \mathfrak{S}^J -meßbar.

Definition 18. In obiger Situation heißt das Bildmaß²⁸ X_IP auf (S^I, \mathfrak{S}^I) die Verteilung von X (auf dem Raum (S^I, \mathfrak{S}^I)).

Bemerkung 11. Sei μ ein Wahrscheinlichkeitsmaß auf (S^I, \mathfrak{S}^I) . Betrachte den durch

$$X_t(\omega) = \omega(t)$$

für $\omega \in S^I$ und $t \in I$ definierten kanonischen Prozeß. Klar: $X_I \mu = \mu$, da $X_I = \mathrm{Id}$.

Also: Konstruktion von stochastischen Prozessen durch Konstruktion von Wahrscheinlichkeitsmaßen auf (S^I, \mathfrak{S}^I) .

 $^{^{27} \}infty \cdot 0 = 0.$

²⁸Also $(X_I P)(A) = P(\{\omega \in \Omega : X_{\cdot}(\omega) \in A\})$ für $A \in \mathfrak{S}^I$.

Beispiel 10.

- (i) Produktmaße: hier I und (S,\mathfrak{S}) beliebig, aber man erhält nur Prozesse mit unabhängigen Zufallselementen.
- (ii) Markov–Kerne: Satz von Ionesu–Tulcea für $I = \mathbb{N}$ und (S, \mathfrak{S}) beliebig.

Nun: I beliebig, S geeigneter topologischer Raum und $\mathfrak{S} = \mathfrak{B}(S)$. Setze $\mathfrak{P}_0(I) = \{J \subset I : J \neq \emptyset \text{ endlich}\}$, betrachte die Projektionen

$$\pi_{J_2}^{J_1}: S^{J_1} \to S^{J_2} \qquad (z_j)_{j \in J_1} \mapsto (z_j)_{j \in J_2}$$

für $\emptyset \neq J_2 \subset J_1 \subset I$. Kurz: $\pi_J = \pi_J^I$.

Definition 19. $(X_JP)_{J\in\mathfrak{P}_0(I)}$ heißt²⁹ die Familie der endlich-dimensionalen Randverteilungen von X.

Bemerkung 12.

(i) Für $J = \{t_1, \dots, t_n\}, A_1, \dots, A_n \in \mathfrak{S}$ $X_J P(A_1 \times \dots \times A_n) = P(\{(X_{t_1}, \dots, X_{t_n}) \in A_1 \times \dots \times A_n\}).$

(ii) Sei $X' = (X'_t)_{t \in I}$ ein Prozeß auf einem Wahrscheinlichkeitsraum $(\Omega', \mathfrak{A}', P')$ mit Zustandsraum (S, \mathfrak{S}) . Dann

$$X_I P = X_I' P' \quad \Leftrightarrow \quad \forall \ J \in \mathfrak{P}_0(I) : \quad X_J P = X_J' P'.$$

Frage: Existenz eines Prozesses mit vorgegebenen endlich-dimensionalen Randverteilungen?

Definition 20. Familie $(\mu_J)_{J \in \mathfrak{P}_0(I)}$ von Wahrscheinlichkeitsmaßen μ_J auf (S^J, \mathfrak{S}^J) heißt projektiv, falls

$$\forall J_1, J_2 \in \mathfrak{P}_0(I): J_2 \subset J_1 \Rightarrow \mu_{J_2} = \pi_{J_2}^{J_1} \mu_{J_1}.$$

Klar: X stochastischer Proze $\beta \Rightarrow (X_J P)_{J \in \mathfrak{P}_0}$ projektiv.

Definition 21. Topologischer Raum (M, \mathfrak{O}) heißt *polnisch*, falls eine Metrik ρ auf M existiert, so daß

- (i) ρ die Topologie \mathfrak{O} erzeugt,
- (ii) (M, ρ) vollständig und separabel.

Beispiel 11. $M = \mathbb{R}^d$, jeder separable Banachraum, $M = C([0, \infty[)$ mit der Topologie der gleichmäßigen Konvergenz auf Kompakta, siehe Proposition II.3.

²⁹Im Fall $S = \mathbb{R}$, $\mathfrak{S} = \mathfrak{B}(\mathbb{R})$ identifiziert man $X_J P$ oft mit einer Verteilung auf $\mathbb{R}^{|J|}$.

Satz 13 (Äußere Regularität von Borel-Maßen). Sei (M, ρ) ein metrischer Raum und ν ein Wahrscheinlichkeitsmaß auf $(M, \mathfrak{B}(M))$. Dann gilt

$$\nu(A) = \inf\{\nu(O) : O \supset A, O \text{ offen}\} = \sup\{\nu(C) : C \subset A, A \text{ abgeschlossen}\}.$$

Beweis. Übung 4.4.

Satz 14 (Innere Regularität von Borel-Maßen). Sei (M, \mathfrak{O}) ein polnischer Raum und ν ein Wahrscheinlichkeitsmaß auf $(M, \mathfrak{B}(M))$. Dann gilt

$$\nu(A) = \sup \{ \nu(C) : C \subset A, C \text{ kompakt} \}.$$

Beweis. Wir zeigen die Aussage zunächst für A=M, also

$$1 = \sup\{\nu(C) : C \subset M, \ C \text{ kompakt}\}. \tag{6}$$

OBdA: (M, ρ) vollständiger separabler metrischer Raum. Wähle $(m_i)_{i \in \mathbb{N}}$ dicht in M. Setze

$$B_{n,i} = \{ m \in M : \rho(m, m_i) < 1/n \}$$

für $i, n \in \mathbb{N}$. Sei $\varepsilon > 0$. Wähle $i_n \in \mathbb{N}$ mit

$$\nu(M \setminus \bigcup_{i=1}^{i_n} B_{n,i}) \le \varepsilon \cdot 2^{-n}.$$

Setze

$$B = \bigcap_{n=1}^{\infty} \bigcup_{i=1}^{i_n} B_{n,i}.$$

Dann

$$\nu(M \setminus \overline{B}) \le \nu(M \setminus B) \le \sum_{n=1}^{\infty} \nu(M \setminus \bigcup_{i=1}^{i_n} B_{n,i}) \le \varepsilon.$$

Um (6) zu folgern, bleibt zu zeigen, daß \overline{B} kompakt ist. Dazu zeigen wir, daß jede Folge $(z_j)_{j\in\mathbb{N}}$ in B eine Cauchy-Teilfolge enthält und verwenden dann die Vollständigkeit von (M, ρ) .

Nach Definition von B existiert $i_1^* \in \{1, \ldots, i_1\}$, so daß $|\{j \in \mathbb{N} : z_j \in B_{1,i_1^*}\}| = \infty$, d.h. es existiert eine Teilfolge, die stets in B_{1,i_1^*} liegt. Durch Iteration und Diagonalisierung bekommt man so eine Folge von Indizes

$$i_n^* \in \{1, \dots, i_n\}$$

und eine Teilfolge $(z_{j_n})_{n\in\mathbb{N}}$ von $(z_j)_{j\in\mathbb{N}}$, welche für alle $n\geq k$

$$z_{j_n} \in B_{k,i_k^*}$$

erfüllt. Also ist $(z_i)_{i\in\mathbb{N}}$ eine Cauchy-Folge.

Nun sei $A \in \mathfrak{B}(M)$ beliebig. Nach Satz 13 existiert für $\varepsilon > 0$ eine abgeschlossene Menge $C \subset A$ mit $\nu(A \setminus C) \leq \varepsilon$. Wegen (6) existiert eine kompakte Menge $K \subset M$ mit $\nu(M \setminus K) \leq \varepsilon$. Fazit: $D = C \cap K \subset A$ ist kompakt und erfüllt

$$\nu(A \setminus D) < 2\varepsilon$$
.

Satz 15 (Konsistenzsatz von Daniell 1918, Kolmogorov 1933). Sei (S, \mathfrak{D}) ein polnischer Raum, $\mathfrak{S} = \mathfrak{B}(S)$, und $(\mu_J)_{J \in \mathfrak{P}_0(I)}$ eine projektive Familie von Wahrscheinlichkeitsmaßen μ_J auf (S^J, \mathfrak{S}^J) . Dann existiert genau ein Wahrscheinlichkeitsmaß μ auf (S^I, \mathfrak{S}^I) , so daß

$$\forall J \in \mathfrak{P}_0(I) : \pi_J \mu = \mu_J.$$

Für den Beweis benötigen wir zwei Lemmata.

Lemma 3. Ist (S, \mathfrak{O}) ein polnischer Raum und $J \neq \emptyset$ eine endliche Menge, so ist (S^J, \mathfrak{O}^J) ein polnischer Raum und $\mathfrak{B}(S^J) = (\mathfrak{B}(S))^J$.

Beweis. Siehe Gänssler, Stute (1977, Satz 1.3.12). Es gilt stets $\mathfrak{B}(S^J) \supset (\mathfrak{B}(S))^J$ und bei polnischen Räumen auch $\mathfrak{B}(S^J) \subset (\mathfrak{B}(S))^J$.

Lemma 4. Sei (S, ρ) ein metrischer Raum, $I \neq \emptyset$, $J_n \in \mathfrak{P}_0(I)$ sowie $K_n \subset S^{J_n}$ kompakt. Setze

$$Y_n = \bigcap_{\ell=1}^n (\pi_{J_\ell})^{-1}(K_\ell).$$

Falls $Y_n \neq \emptyset$ für alle $n \in \mathbb{N}$, so ist³⁰ $\bigcap_{n=1}^{\infty} Y_n \neq \emptyset$.

Beweis. Sei $(y_n)_{n\in\mathbb{N}}$ eine Folge in S^I mit $y_n\in Y_n$. Für $m\geq n$ ist $y_m\in Y_n$, also folgt für $t\in J_n$

$$y_m(t) = \pi_{\{t\}}^{J_n} \circ \pi_{J_n}(y_m) \in \pi_{\{t\}}^{J_n}(K_n),$$

und $\pi_{\{t\}}^{J_n}(K_n)$ ist kompakt. Setze $J=\bigcup_{n=1}^\infty J_n$. Es existiert eine Teilfolge $(y_{n_\ell})_{\ell\in\mathbb{N}}$, so daß für jedes $t\in J$ die Folge $(y_{n_\ell}(t))_{\ell\in\mathbb{N}}$ konvergiert. Fixiere $a\in S$ und definiere $z\in S^I$ durch

$$z(t) = \lim_{\ell \to \infty} y_{n_{\ell}}(t),$$

falls $t \in J$, und andernfalls durch z(t) = a. Da K_n abgeschlossen, folgt $\pi_{J_n}(z) \in K_n$ für alle $n \in \mathbb{N}$ und damit $z \in \bigcap_{n=1}^{\infty} Y_n$.

Beweis von Satz 15. Eindeutigkeit: siehe Bemerkung 12. Existenz: Wir betrachten die Algebra

$$\mathfrak{S}_0^I := \bigcup_{J \in \mathfrak{P}_0(I)} \sigma(\{\pi_J\})$$

der Zylindermengen. Für $A \in \mathfrak{S}_0^I$ von der Form $A = \pi_J^{-1}(B)$ für $B \in \mathfrak{S}^J$ und $J \in \mathfrak{P}_0(I)$ setzen wir

$$\widehat{\mu}(A) := \mu_J(B).$$

Dies ist wohldefiniert, da $(\mu_J)_{J\in\mathfrak{P}(I)}$ eine projektive Familie ist. Klar: $\widehat{\mu}$ ist Inhalt auf \mathfrak{S}_0^I . Nach dem Maßfortsetzungssatz genügt es nun zu zeigen, daß $\widehat{\mu}$ stetig in \emptyset ist.

Seien also $Z_n \in \mathfrak{S}_0^I$ mit $Z_n \downarrow \emptyset$. Annahme: $\inf_{n \in \mathbb{N}} \widehat{\mu}(Z_n) = \alpha > 0$. Es sei

$$Z_n = \pi_{J_n}^{-1}(B_n)$$

 $[\]overline{^{30}}$ Dies verallgemeinert den Cantorschen Durchschnittssatz, der den Falle |I|=1 behandelt.

mit $B_n \in \mathfrak{S}^{J_n}$. OBdA können wir $J_1 \subset J_2 \subset \ldots$ voraussetzen. Nach Lemma 3 und Satz 14 existieren kompakte Mengen $K_n \subset B_n$ mit $\mu_{J_n}(B_n \setminus K_n) \leq 2^{-n} \cdot \alpha$. Setze $Z'_n = \pi_{J_n}^{-1}(K_n)$, dann folgt

$$\widehat{\mu}(Z_n \setminus Z_n') \le 2^{-n} \cdot \alpha.$$

Damit hat man für Y_n gemäß Lemma 4

$$\widehat{\mu}(Z_n) - \widehat{\mu}(Y_n) = \widehat{\mu}\left(\bigcup_{\ell=1}^n (Z_n \setminus Z'_\ell)\right) \le \sum_{\ell=1}^n \widehat{\mu}(Z_\ell \setminus Z'_\ell) < \alpha.$$

Da $\widehat{\mu}(Z_n) \geq \alpha$, folgt hieraus $\widehat{\mu}(Y_n) > 0$ und damit $Y_n \neq \emptyset$ für alle $n \in \mathbb{N}$. Aus Lemma 4 folgt nun $\bigcap_n Y_n \neq \emptyset$, ein Widerspruch.

Definition 22. In der Situation von Satz 15 heißt μ der *projektive Limes* der Familie $(\mu_J)_{J \in \mathfrak{P}(I)}$, Bez.: $\mu = \lim_{J \in \mathfrak{P}(J)} \mu_J$.

Anwendung: Prozesse mit unabhängigen Inkrementen. Im folgenden $I = [0, \infty[$ und $(S, \mathfrak{S}) = (\mathbb{R}^d, \mathfrak{B}(\mathbb{R}^d)).$

Definition 23. $(X_t)_{t \in I}$ besitzt

(i) unabhängige Inkremente, falls

$$X_{t_1} - X_{t_0}, \dots, X_{t_n} - X_{t_{n-1}}$$

unabhängig für alle $n \in \mathbb{N}$ und $0 \le t_0 < \cdots < t_n$.

(ii) stationäre Inkremente, falls für alle $0 \le s < t$ die Verteilungen von $X_t - X_s$ und $X_{t-s} - X_0$ übereinstimmen.

Lemma 5. Für $X = (X_t)_{t \in I}$ mit X_0 *P*-f.s. konstant gilt

X besitzt unabhängige Inkremente $\iff \forall \ 0 \le s < t : X_t - X_s$ unabhängig von \mathfrak{F}_s^X .

Beweis. \ll : induktiv. \gg Fixiere s und setze

$$\mathfrak{D} = \{ A \in \mathfrak{F}_s^X : 1_A, X_t - X_s \text{ unabhängig} \},$$

$$\mathfrak{C} = \bigcup_{n \in \mathbb{N}, \ 0 = s_0 < \dots < s_n = s} \sigma(\{X_{s_0}, \dots, X_{s_n}\}).$$

Klar: $\mathfrak D$ ist Dynkin-System, $\mathfrak C\subset \mathfrak F^X_s$, $\sigma(\mathfrak C)=\mathfrak F^X_s$, $\mathfrak C$ ist \cap -stabil. Wir zeigen $\mathfrak C\subset \mathfrak D$ und schließen dann

$$\mathfrak{F}_{\mathfrak{s}}^X = \sigma(\mathfrak{C}) = \delta(\mathfrak{C}) \subset \mathfrak{D} \subset \mathfrak{F}_{\mathfrak{s}}^X$$

Nach Voraussetzung gilt für $0 = s_0 < \cdots < s_n = s < t$

$$X_0, X_{s_1} - X_{s_0}, \dots, X_{s_n} - X_{s_{n-1}}, X_t - X_s$$
 unabhängig.

Ferner

$$\sigma(\{X_0, X_{s_1} - X_{s_0}, \dots, X_{s_n} - X_{s_{n-1}}\}) = \sigma(\{X_0, X_{s_1}, \dots, X_{s_n}\}).$$

Sei X ein Prozeß mit unabhängigen Inkrementen. Setze

$$\nu_{s,t} = P_{X_t - X_s}, \qquad 0 \le s \le t.$$

Beispiel 12. Poisson-Prozeß besitzt stationäre, unabhängige Inkremente. Stationarität: klar, da $X_t - X_s$ Poisson-verteilt mit Parameter $\lambda(t-s)$. Unabhängigkeit: beachte $\mathfrak{F}_s^X \subset \mathfrak{F}_s$ für an \mathfrak{F} adaptierte Prozesse X und wende Lemma 5 an.

Bemerkung 13.

- (i) Offenbar gilt $\nu_{s,t} = \nu_{s,r} * \nu_{r,t}$ für $0 \le s < r < t$.
- (ii) Falls $X_0 = 0$, so ist die Verteilung von X durch $(\nu_{s,t})_{0 \le s < t}$ eindeutig bestimmt.

Satz 16. Sei $(\nu_{s,t})_{0 \leq s < t}$ eine Familie von Wahrscheinlichkeitsmaßen auf $(\mathbb{R}^d, \mathfrak{B}(\mathbb{R}^d))$

$$\forall \ 0 \le s < r < t : \quad \nu_{s,t} = \nu_{s,r} * \nu_{r,t}. \tag{7}$$

Dann existiert ein Wahrscheinlichkeitsraum $(\Omega, \mathfrak{A}, P)$ und ein darauf definierter stochastischer Prozeß $X = (X_t)_{t \in I}$ mit Zustandsraum $(\mathbb{R}^d, \mathfrak{B}(\mathbb{R}^d))$, so daß

- (i) $X_0 = 0$.
- (ii) X hat unabhängige Inkremente.
- (iii) $\forall \ 0 \le s < t : P_{X_t X_s} = \nu_{s,t}$.

Durch diese Forderungen ist die Verteilung des Prozesses eindeutig bestimmt.

Beweis. Wende Satz 15 und Bemerkung 13 an.

Bemerkung 14. Spezialfall: Prozesse mit unabhängigen und stationären Zuwächsen und $X_0 = 0$ Hier wird X in seiner Verteilung schon durch $\nu_t = \nu_{t,0}$ bestimmt. Die Familie $(\nu_t)_{t>0}$ heißt Faltungshalbgruppe $(\nu_t * \nu_s = \nu_{t+s})$. Beispiel: Poisson-Prozeß

Kapitel II

Brownsche Bewegung

Literatur:

Karatzas, Shreve (1999, Chap. 2).

Gegeben: Wahrscheinlichkeitsraum $(\Omega, \mathfrak{A}, P)$ mit Filtration $\mathfrak{F} = (\mathfrak{F}_t)_{t \in I}$, wobei $I = [0, \infty[$.

Definition 1. $W = (W_t)_{t \in I}$ Brownsche Bewegung (Wiener-Proze β) bzgl. \mathfrak{F} , falls

- (i) W reellwertig mit stetigen Pfaden,
- (ii) W adaptiert an \mathfrak{F} ,
- (iii) $W_0 = 0$,
- (iv) für $0 \le s < t$ ist $W_t W_s$
 - (a) unabhängig von \mathfrak{F}_s ,
 - (b) N(0, t s)-verteilt¹.

Bemerkung 1. Brownsche Bewegungen sind Prozesse mit stationären, unabhängigen Inkrementen, vgl. Beispiel I.12. Ferner besitzen alle Brownschen Bewegungen dieselbe Verteilung auf $(\mathbb{R}^I, \mathfrak{B}(\mathbb{R})^I)$, siehe Bemerkung I.13.(ii).

Proposition 1. $W \in \mathfrak{M}_2^c$ und $\langle W \rangle_t = t$.

Beweis. ² Vgl. Beweise für den kompensierten Poisson-Prozeß (mit $\lambda = 1$), siehe Bsp. I.6 und Übung 2.3.b. Zum Nachweis der Martingaleigenschaft benötigt: (iv.a) und $E(W_t - W_s) = 0$. Zur Bestimmung der quadratischen Variation benötigt: (iv.a) und $E(W_t - W_s)^2 = |t - s|$.

Die endlich-dimensionalen Randverteilungen einer Brownschen Bewegung sind wie folgt gegeben.

 $^{{}^1}N(m,K)$ ist die Normalverteilung auf $(\mathbb{R}^n,\mathfrak{B}(\mathbb{R}^n))$ mit Mittelwert $m\in\mathbb{R}^n$ und Kovarianzmatrix $K\in\mathbb{R}^{n\times n}$ (n=1): Varianz K). Siehe Gänssler, Stute (1977, Kap. 1.19)

²Siehe auch Karatzas, Shreve (1999, Exercise I.5.20)

Lemma 1. Sei W Brownsche Bewegung und

$$K = (\min(t_i, t_j))_{1 \le i, j \le n} \tag{1}$$

mit paarweise verschiedenen $t_1, \ldots, t_n \in I$. Dann:

 W_{t_1}, \ldots, W_{t_n} sind gemeinsam N(0, K)-verteilt.

Beweis. Gelte $0 \le t_1 < \cdots < t_n$. Setze

$$Z = (W_{t_1}, \dots, W_{t_n})', \qquad Y = (W_{t_1} - W_0, W_{t_2} - W_{t_1}, \dots, W_{t_n} - W_{t_{n-1}})'$$

sowie

$$A = \begin{pmatrix} 1 & 0 \\ \vdots & \ddots & \\ 1 & \dots & 1 \end{pmatrix}.$$

Mit Bemerkung 1 und (iv.b) folgt: Y ist N(0, D)-verteilt mit

$$D = \begin{pmatrix} t_1 - 0 & 0 \\ & \ddots & \\ 0 & t_n - t_{n-1} \end{pmatrix}.$$

Wg. (iii) gilt $Z = A \cdot Y$. Somit ist Z N(m, K)-verteilt mit $m = A \cdot 0 = 0$ und

$$K = A \cdot D \cdot A' = \begin{pmatrix} t_1 & t_1 & \dots & t_1 \\ t_1 & t_2 & \dots & t_2 \\ \vdots & \vdots & \ddots & \vdots \\ t_1 & t_2 & \dots & t_n \end{pmatrix} = (\min(t_i, t_j))_{1 \le i, j \le n}.$$

1 Eine Konstruktion der Brownschen Bewegung

Hier: mit Hilfe des Konsistenzsatzes von Kolmogorov.

Proposition 2. Es existiert genau ein Wahrscheinlichkeitsmaß Q auf $(\mathbb{R}^I, \mathfrak{B}(\mathbb{R})^I)$, so daß für den kanonischen Prozeß $(\widetilde{W}_t)_{t\in I}$ auf $(\mathbb{R}^I, \mathfrak{B}(\mathbb{R})^I, Q)$ gilt

- (i) $\widetilde{W}_0 = 0$ Q-f.s.,
- (ii) \widetilde{W} besitzt unabhängige Inkremente,
- (iii) $\widetilde{W}_t \widetilde{W}_s$ ist N(0, t s)-verteilt für $0 \le s < t$.

Beweis. Für $\nu_{s,t} = N(0, t - s)$ ist Satz I.16 anwendbar.

Der Pfadraum von \widetilde{W} ist viel zu groß. Die anderen Eigenschaften der Brownschen Bewegung (bzgl. der kanonischen Filtration) sind hingegen erreicht. Zur Verifikation von (iv).(a) verwendet man Lemma I.5.

Frage: Gilt $C(I) \in \mathfrak{B}(\mathbb{R})^I$ und P(C(I)) = 1? Antwort: Nein, da

$$\forall A \in \mathfrak{B}(\mathbb{R})^I: \quad A \subset C(I) \quad \Rightarrow \quad A = \emptyset.$$

 $\mathbf{Satz}\ \mathbf{1}$ (Kolmogorov-Chentsov). Der Prozeß $(\widetilde{X}_t)_{t\in[0,T]}$ erfülle³

$$\exists \ \alpha, \beta > 0 : \sup_{s,t \in [0,T]} \frac{E|\widetilde{X}_s - \widetilde{X}_t|^{\alpha}}{|s - t|^{1+\beta}} < \infty.$$

Dann existiert für jedes

$$\gamma \in]0, \beta/\alpha[$$

eine Modifikation $(X_t)_{t\in[0,T]}$ von \widetilde{X} , eine positive Zufallsvariable h sowie $\delta > 0$, so daß für alle $\omega \in \Omega$ gilt⁴:

$$\sup_{0 < |t-s| < h(\omega)} \frac{|X_s(\omega) - X_t(\omega)|}{|s-t|^{\gamma}} \le \delta.$$
 (2)

Beweis. Für $\varepsilon > 0$ gilt⁵

$$P(\{|\widetilde{X}_s - \widetilde{X}_t| \ge \varepsilon\}) \le \varepsilon^{-\alpha} \cdot E|\widetilde{X}_s - \widetilde{X}_t|^{\alpha} \le \varepsilon^{-\alpha} \cdot |s - t|^{1+\beta}.$$

Also: $\widetilde{X}_{s_n} \stackrel{P\text{-stoch}}{\to} \widetilde{X}_t$, falls $s_n \to t$.

Nun der Einfachheit halber: T=1. Wähle $\gamma\in]0,\beta/\alpha[$. Dann

$$\begin{split} P\left(\left\{\max_{1 \leq k \leq 2^n} |\widetilde{X}_{k/2^n} - \widetilde{X}_{(k-1)/2^n}| \geq 2^{-\gamma n}\right\}\right) &= P\left(\bigcup_{k=1}^{2^n} \left\{|\widetilde{X}_{k/2^n} - \widetilde{X}_{(k-1)/2^n}| \geq 2^{-\gamma n}\right\}\right) \\ & \leq \sum_{k=1}^{2^n} 2^{\gamma n \alpha} \cdot 2^{-n(1+\beta)} = 2^{-n(\beta-\gamma\alpha)}. \end{split}$$

Mit dem Lemma von Borel-Cantelli folgt die Existenz von $\Omega^* \in \mathfrak{A}$ mit $P(\Omega^*) = 1$ und $n^* : \Omega \to \mathbb{N}$ meßbar, so daß für alle $\omega \in \Omega^*$ gilt

$$\forall n \ge n^*(\omega) : \max_{1 \le k \le 2^n} |\widetilde{X}_{k/2^n}(\omega) - \widetilde{X}_{(k-1)/2^n}(\omega)| < 2^{-\gamma n}.$$

Setze

$$D_n = \{k/2^n : k = 0, \dots, 2^n\}, \qquad D = \bigcup_{n \in \mathbb{N}_0} D_n$$

sowie $h(\omega) = 2^{-n^*(\omega)}$. Man zeigt nun⁶ für $\omega \in \Omega^*$ und $s,t \in D$ mit $|s-t| < h(\omega)$

$$|\widetilde{X}_s(\omega) - \widetilde{X}_t(\omega)| \le \underbrace{\frac{2}{1 - 2^{-\gamma}}}_{=\delta} \cdot |s - t|^{\gamma}.$$

 $^{^3\}mathrm{Versch\"{a}rfung}$ für Gauß-Prozesse, siehe Adler (1981).

⁴alle Pfade sind lokal Hölder-stetig mit Exponent γ .

 $^{^5 \}leq \text{für } O(\dots).$

⁶Details bei Karatzas, Shreve (1999, p. 54, 55)

Also ist $\widetilde{X}_{\cdot}(\omega)$ für jedes $\omega \in \Omega^*$ auf D gleichmäßig stetig und somit eindeutig zu einer gleichmäßig stetigen Abbildung $X_{\cdot}(\omega):[0,1] \to \mathbb{R}$ fortsetzbar. Für $\omega \in \Omega \setminus \Omega^*$ setzen wir $X_t(\omega)=0$.

Klar: X ist ein stochastischer Prozeß, der (2) erfüllt. Für $t \in D$ gilt

$$P(\{X_t = \widetilde{X}_t\}) \ge P(\Omega^*) = 1.$$

Für $t \in [0,1] \setminus D$ und Folgen $(s_n)_{n \in \mathbb{N}}$ in D mit $s_n \to t$ gilt

$$\widetilde{X}_{s_n} \overset{P\text{-stoch.}}{\to} \widetilde{X}_t \qquad \wedge \qquad \widetilde{X}_{s_n} \overset{P\text{-f.s.}}{\to} X_t.$$

Also: $\widetilde{X}_t = X_t P$ -f.s.

Satz 2. Auf dem Wahrscheinlichkeitsraum ($\mathbb{R}^I, \mathfrak{B}(\mathbb{R})^I, Q$) aus Proposition 2 existiert ein Prozeß, der bzgl. seiner kanonischen Filtration eine Brownsche Bewegung ist.

Beweis. Betrachte den o.g. Wahrscheinlichkeitsraum. Es gilt für $0 \le s < t$

$$E(|\widetilde{W}_s - \widetilde{W}_t|^{\alpha}) = \frac{1}{\sqrt{2\pi(t-s)}} \int_{-\infty}^{\infty} |y|^{\alpha} \exp\left(-\frac{y^2}{2(t-s)}\right) dy$$
$$= (t-s)^{\alpha/2} \cdot \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} |y|^{\alpha} \exp(-\frac{1}{2}y^2) dy.$$

Wähle $\alpha > 2$ und $\beta = \alpha/2 - 1$ sowie T > 0. Dann existiert gemäß Satz 1 eine Modifikation $(W_t^T)_{t \in [0,T]}$ von $(\widetilde{W}_t)_{t \in [0,T]}$ mit stetigen Pfaden. Setze

$$\Omega_T = \bigcap_{t \in \mathbb{Q} \cap [0,T]} \{ \widetilde{W}_t = W_t^T \}$$

und

$$\widetilde{\Omega} = \bigcap_{T \in \mathbb{N}} \Omega_T.$$

Dann

$$Q(\widetilde{\Omega}) = 1,$$

und für $\omega \in \widetilde{\Omega}$ und ganzzahlige $0 \leq T_1 \leq T_2$ sowie $t \in [0,T_1]$ gilt

$$W_t^{T_1}(\omega) = W_t^{T_2}(\omega).$$

Somit ist

$$W_t(\omega) = \begin{cases} W_t^T(\omega), & \text{falls } \omega \in \widetilde{\Omega} \text{ und } T \in \mathbb{N} \cap [t, \infty[t]] \\ 0, & \text{falls } \omega \notin \widetilde{\Omega} \end{cases}$$

wohldefiniert, und W ist eine Modifikation von \widetilde{W} .

Betrachte die kanonische Filtration $\mathfrak{F} = (\mathfrak{F}_t^W)_{t \in I}$. Klar: die Eigenschaften (i), (ii), (iii), (iv.b) der Brownschen Bewegung sind erfüllt und W besitzt unabhängige Inkremente. Wende Lemma I.5 an, um (iv.a) zu erhalten.

Für jedes $\gamma < \frac{1}{2}$ sind die Pfade einer Brownschen Bewegung f.s. lokal Hölder-stetig mit Exponent γ . Man wähle hierzu in obigem Beweis α hinreichend groß und $\beta = \alpha/2 - 1$. Es gilt $\lim_{\alpha \to \infty} \beta/\alpha = \frac{1}{2}$. Wir sehen später, daß diese Glattheitsaussage scharf – bis auf logarithmische Terme – ist.

2 Das Wiener Maß und das Donskersche Invarianzprinzip

2.1 Das Wiener-Maß

Zunächst: das kanonische Modell für die Brownsche Bewegung.

Setze

$$\rho(f_1, f_2) = \sum_{n=1}^{\infty} \frac{1}{2^n} \max_{t \in [0, n]} \min(|f_1(t) - f_2(t)|, 1), \qquad f_i \in C(I).$$

Proposition 3. $(C(I), \rho)$ ist ein vollständiger separabler metrischer Raum⁷.

Beweis. Unter Verwendung der entsprechenden Eigenschaften im kompakten Fall. \Box

Wir betrachten im folgenden stets obige Metrik auf C(I) und die zugehörige Topologie samt Borelscher σ -Algebra $\mathfrak{B}(C(I))$.

Proposition 4.

$$\mathfrak{B}(C(I)) = \sigma(\{f \mapsto f(t) : t \in I\}).$$

Beweis. Sei $\mathfrak{G} = \sigma(\{f \mapsto f(t) : t \in I\})$. Für jedes $t \in I$ ist $f \mapsto f(t)$ stetig und somit Borel-meßbar. Also folgt: $\mathfrak{G} \subset \mathfrak{B}(C(I))$.

Wir zeigen:

$$\mathfrak{G}$$
 enthält alle offenen Kugeln. (3)

Ersetze in $\rho(\cdot, f_0)$ die Maxima über [0, n] durch die Suprema über $[0, n] \cap \mathbb{Q}$. Man erhält so eine \mathfrak{G} -meßbare Abbildung $\widetilde{\rho}(\cdot, f_0)$, und es gilt $\rho(\cdot, f_0) = \widetilde{\rho}(\cdot, f_0)$. Hiermit folgt (3).

In jedem separablen metrischen Raum gilt: jede offene Menge ist abzählbare Vereinigung von offenen Kugeln. Mit (3) folgt: \mathfrak{G} enthält alle offenen Teilmengen von C(I). Also: $\mathfrak{B}(C(I)) \subset \mathfrak{G}$.

Obige Ergebnisse gelten analog⁸ im Falle einer Indexmenge [0,T]. Für $A \subset C(I)$

$$A \in \sigma(\{f \mapsto f(t) : t \in [0, T]\}) \quad \Leftrightarrow \quad \exists \ B \in \mathfrak{B}(C([0, T])) : A = \{f|_{[0, T]} \in B\}.$$
 (4)

Betrachte Prozeß $(X_t)_{t\in I}$ mit stetigen Pfaden auf einem Wahrscheinlichkeitsraum $(\Omega, \mathfrak{A}, P)$. Dann ist

$$\Psi: \Omega \to C(I): \omega \mapsto X_{\cdot}(\omega)$$

wohldefiniert und Proposition 4 sichert die \mathfrak{A} - $\mathfrak{B}(C(I))$ -Meßbarkeit von Ψ .

Definition 2. In obiger Situation heißt ΨP die $Verteilung^9$ von X (auf dem Raum $(C(I), \mathfrak{B}(C(I)))$).

 $^{^7{\}rm Konvergenz}:$ gleichmäßige Konvergenz auf beliebigen Kompakta.

⁸Normierter Raum $(C([0,T]), \|\cdot\|_{\infty}).$

 $^{{}^9\}Psi P(A) = P(\Psi^{-1}A) = P(\{\omega \in \Omega : X_{\cdot}(\omega) \in A\}) \text{ für } A \in \mathfrak{B}(C(I)).$

Im folgenden studieren wir Verteilungen auf $(C(I), \mathfrak{B}(C(I)))$.

Lemma 2. Gegeben Prozesse $X^{(i)}$ auf $(\Omega^{(i)}, \mathfrak{A}^{(i)}, P^{(i)})$ mit stetigen Pfaden, i = 1, 2. Dann sind äquivalent

- (i) $X^{(1)}$, $X^{(2)}$ besitzen dieselben endlich-dimensionalen Randverteilungen,
- (ii) die Verteilungen von $X^{(1)}$ und $X^{(2)}$ stimmen überein.

Beweis. "(ii) \Rightarrow (i)" klar.

 $,(i) \Rightarrow (ii)$ ": Die Zylindermengen

$$\{f \in C(I) : (f(t_1), \dots, f(t_n)) \in A\}$$

mit $n \in \mathbb{N}$, $t_i \in I$ und $A \in \mathfrak{B}(\mathbb{R}^n)$ bilden gemäß Proposition 4 einen \cap -stabilen Erzeuger von $\mathfrak{B}(C(I))$. Nach Voraussetzung stimmen hierauf die Verteilungen von $X^{(1)}$ und $X^{(2)}$ überein. Verwende den Eindeutigkeitssatz für Wahrscheinlichkeitsmaße, siehe Gänssler, Stute (1977, Satz 1.4.10).

Definition 3. Das Wiener-Maß P_* ist die Verteilung einer Brownschen Bewegung.

Wir halten fest: der durch $W_t(f) = f(t)$ auf $(C(I), \mathfrak{B}(C(I)), P_*)$ definierte Prozeß ist eine Brownsche Bewegung bezüglich seiner kanonischen Filtration; genannt: das kanonische Modell der Brownschen Bewegung. Der Beweis von (iv.a) beruht auf Lemma I.5; der Rest ist klar. Siehe (4) zur kanonischen Filtration.

2.2 Schwache Konvergenz

Im folgenden: (M, ρ) metrischer Raum mit Borelscher σ -Algebra $\mathfrak{B}(M)$. Bez.: $\mathfrak{M}(M)$ Menge aller Wahrscheinlichkeitsmaße auf $(M, \mathfrak{B}(M))$.

Definition 4. Folge $(P_n)_{n\in\mathbb{N}}$ in $\mathfrak{M}(M)$ konvergiert schwach gegen $P\in\mathfrak{M}(M)$, falls

$$\lim_{n \to \infty} \int_{M} \varphi \, dP_n = \int_{M} \varphi \, dP \tag{5}$$

für alle stetigen beschränkten Abbildungen $\varphi: M \to \mathbb{R}$. Bez.: $P_n \to P$.

Erinnerung Zentraler Grenzwertsatz: schwache Konvergenz der Verteilungen von standardisierten Partialsummen gegen die Standard-Normalverteilung.

Proposition 5. Äquivalent $sind^{10}$

- (i) $P_n \to P$,
- (ii) (5) gilt für alle gleichmäßig stetigen beschränkten Abbildungen $\varphi: M \to \mathbb{R}$.
- (iii) $\forall A \subset M$ offen: $\liminf P_n(A) \geq P(A)$,

¹⁰Notation: ∂A Rand von A.

(iv)
$$\forall A \in \mathfrak{B}(M): P(\partial A) = 0 \Rightarrow \lim_{n \to \infty} P_n(A) = P(A).$$

Beweis. Siehe Gänssler, Stute (1977, p. 342–344).

Fortan (M, ρ) vollständig und separabel.

Proposition 6. Es existiert eine Metrik Δ auf $\mathfrak{M}(M)$, so daß $(\mathfrak{M}(M), \Delta)$ vollständig und separabel ist und

$$P_n \to P \quad \Leftrightarrow \quad \lim_{n \to \infty} \Delta(P_n, P) = 0$$

für alle $P, P_1, \ldots \in \mathfrak{M}(M)$ gilt.

Beweis. Siehe Parthasarathy (1967, Sec. II.6).

Somit: der schwache Limes ist eindeutig bestimmt.

Im folgenden stets obige Metrik auf $\mathfrak{M}(M)$.

Definition 5. $\Pi \subset \mathfrak{M}(M)$ heißt *straff*, falls

$$\forall \varepsilon > 0 \ \exists K \subset M \text{ kompakt } \forall P \in \Pi : P(K) \ge 1 - \varepsilon.$$

Satz I.14 sichert, daß einelementige Teilmengen straff sind.

Satz 3 (Prohorov). Für $\Pi \subset \mathfrak{M}(M)$

 Π relativ kompakt \Leftrightarrow Π straff.

Beweis. Siehe Parthasarathy (1967, p. 48–49).

2.3 Das Donskersche Invarianzprinzip

Funktionale Version des Zentralen Grenzwertsatzes.

Gegeben $(\xi_i)_{i\in\mathbb{N}}$ reellwertig, iid. auf Wahrscheinlichkeitsraum (Ω,\mathfrak{A},P) mit

$$E(\xi_j) = 0, \qquad E(\xi_j^2) = \sigma^2 \in]0, \infty[.$$

Definiere $X: \Omega \to C(I)$ durch¹¹

$$X(\omega)(k) = \sum_{j=1}^{k} \xi_j(\omega), \qquad k \in \mathbb{N}_0,$$

und

$$X(\omega)(t) = (t - k) \cdot X(\omega)(k + 1) + (k + 1 - t) \cdot X(\omega)(k)$$

= $X(\omega)(k) + (t - k) \cdot \xi_{k+1}(\omega),$ $t \in [k, k+1].$

¹¹Stückweise lineare Interpolation der zugehörigen Irrfahrt.

Skaliere wie folgt

$$X^{(n)}(\omega)(t) = \frac{1}{\sigma\sqrt{n}} \cdot X(\omega)(n \cdot t), \qquad t \in I, \ n \in \mathbb{N}.$$

Proposition 4 sichert die \mathfrak{A} - $\mathfrak{B}(C(I))$ -Meßbarkeit von X und $X^{(n)}$, und diese Abbildungen definieren Prozesse mit stetigen Pfaden¹².

Für s = k/n und $t = \ell/n$ mit $k, \ell \in \mathbb{N}_0$ und $k < \ell$ gilt

$$X_t^{(n)} - X_s^{(n)} = \frac{1}{\sigma \sqrt{n}} \cdot (\xi_{k+1} + \dots + \xi_{\ell}).$$

Also

$$E(X_t^{(n)} - X_s^{(n)}) = 0, \qquad E(X_t^{(n)} - X_s^{(n)})^2 = t - s,$$

und $X_t^{(n)} - X_s^{(n)}$ ist unabhängig von

$$\mathfrak{F}_{s}^{X^{(n)}} = \sigma(\{\xi_1, \dots, \xi_k\}).$$

Beachte

$$X_1^{(n)} = \sum_{k=1}^n \frac{1}{\sigma\sqrt{n}} \cdot \xi_k.$$

Der Zentrale Grenzwertsatz zeigt

$$X_1^{(n)}P \to N(0,1).$$

 ${\bf Satz}$ 4 (Donsker). Sei $P_n=X^{(n)}P$ die Verteilung von $X^{(n)},$ und sei P_* das Wiener-Maß. Dann

$$P_n \to P_*$$
.

Beweisskizze. Details bei Karatzas, Shreve (1999, Sec. 2.4).

Wg. Proposition 6 ist zu zeigen: jede Teilfolge von $(P_n)_{n\in\mathbb{N}}$ besitzt eine Teilfolge, die gegen P_* konvergiert.

Betrachte den Stetigkeitsmodul

$$m_t(f;\delta) = \sup\{|f(r) - f(s)| : r, s \in [0,t], |r - s| \le \delta\}$$

von $f \in C(I)$ auf [0,t]. Satz 3 und der Satz von Arzela-Ascoli führen auf folgendes Kompaktheitskriterium für beliebige Folgen $(Q_n)_{n\in\mathbb{N}}$ in $\mathfrak{M}(C(I))$. Äquivalent sind

1. $\{Q_n : n \in \mathbb{N}\}$ straff,

2.

$$\lim_{\lambda \to \infty} \sup_{n \in \mathbb{N}} Q_n(\{|f(0)| > \lambda\}) = 0$$

und

$$\lim_{\delta \to 0} \sup_{n \in \mathbb{N}} Q_n(\{m_t(f; \delta) > \varepsilon\}) = 0$$

für alle $\varepsilon > 0$ und $t \in I$.

¹²Schreibe $X_t(\omega) = X(\omega)(t)$. Analog für $X^{(n)}$

Man verifiziert 2.) für $P_n = Q_n$, und somit gilt: jede Teilfolge von $(P_n)_{n \in \mathbb{N}}$ besitzt eine konvergente Teilfolge.

Betrachte nun die "endlich-dimensionalen Randverteilungen" der Maße P_n . Dazu sei

$$\pi_{t_1,\dots,t_k}:C(I)\to\mathbb{R}^k:f\mapsto(f(t_1),\dots,f(t_k))$$

für $k \in \mathbb{N}$ und $t_1, \ldots, t_k \in I$ paarweise verschieden. Für alle k und t_i zeigt man

$$\pi_{t_1,\dots,t_k}P_n \to N(0,K),$$

wobei K durch (1) gegeben ist¹³. Damit folgt die Unabhängigkeit des Grenzwertes von den betrachteten Teilfolgen, vgl. Lemma 2. Ebenso folgt, daß dieser Grenzwert das Wiener-Maß ist.

Beachte: Obiger Beweis beinhaltet eine weitere Konstruktion der Brownschen Bewegung (und des Wiener-Maßes).

Satz 4 ermöglicht die näherungsweise Berechnung von Funktionalen der Brownschen Bewegung z. Bsp. mittels Monte-Carlo-Methoden (Simulation von Irrfahrten).

3 Markov-Eigenschaft der Brownschen Bewegung

Gegeben: Wahrscheinlichkeitsraum $(\Omega, \mathfrak{A}, P)$ mit Filtration $\mathfrak{F} = (\mathfrak{F}_t)_{t \in I}$ sowie $d \in \mathbb{N}$ und Wahrscheinlichkeitsmaß μ auf $(\mathbb{R}^d, \mathfrak{B}(\mathbb{R}^d))$.

3.1 Mehrdimensionale Brownsche Bewegung

Definition 6. $W = (W_t)_{t \in I}$ d-dimensionale Brownsche Bewegung bzgl. \mathfrak{F} mit Startverteilung μ , falls

- (i) $W \mathbb{R}^d$ -wertig mit stetigen Pfaden,
- (ii) W adaptiert an \mathfrak{F} ,
- (iii) $W_0P = \mu$,
- (iv) für $0 \le s < t$ ist $W_t W_s$
 - (a) unabhängig von \mathfrak{F}_s ,
 - (b) $N(0, (t-s) \operatorname{Id}_d)$ -verteilt.

Speziell falls $\mu(\{x\}) = 1$: d-dimensionale Brownsche Bewegung mit Startpunkt $x \in \mathbb{R}^d$.

 $^{^{13}\}mathrm{F\"{u}r}\ k=t_1=1$ ist dies der Zentrale Grenzwertsatz.

Für jede d-dimensionale Brownsche Bewegung $W = ((W_t^{(1)}, \dots, W_t^{(d)}))_{t \in I}$ mit Startpunkt $x = (x^{(1)}, \dots, x^{(d)})$ gilt: $W^{(1)}, \dots, W^{(d)}$ sind unabhängige Brownsche Bewegungen der Dimension eins mit Startpunkten $x^{(1)}, \dots, x^{(d)}$.

Konstruktion¹⁴: $\Omega = (C(I))^d$, $\mathfrak{A} = (\mathfrak{B}(C(I)))^d$,

$$W_t((f_1, \dots, f_d)) = (f_1(t), \dots, f_d(t))$$

mit kanonischer Filtration, P^0 d-faches Produkt des Wiener-Maßes, Wahrscheinlichkeitsmaß $P = P^{\mu}$ auf (Ω, \mathfrak{A}) definiert durch¹⁵

$$P^{\mu}(A) = \int_{\mathbb{R}^d} \underbrace{P^0(A - x)}_{=P^x(A)} d\mu(x), \qquad A \in \mathfrak{A}.$$
 (6)

Siehe Karatzas, Shreve (1999, p. 72) zur $\mathfrak{B}(\mathbb{R}^d)$ - $\mathfrak{B}([0,1])$ -Meßbarkeit von $x \mapsto P^x(A)$. Im Sinne der schwachen Konvergenz kann eine d-dimensionale Brownsche Bewegung durch eine d-dimensionale Irrfahrt approximiert werden.

Definition 7. Sei M metrischer Raum und $\mu \in \mathfrak{M}(M)$. Bezeichne mit $\overline{\mathfrak{B}(M)}^{\mu}$ die μ -Vervollständigung von $\mathfrak{B}(M)$. Dann heißt

$$\mathfrak{U}(M) = \bigcap_{\mu \in \mathfrak{M}(M)} \overline{\mathfrak{B}(M)}^{\mu}$$

die σ -Algebra der universell meßbaren Mengen. Kurz: universelle Meßbarkeit für $\mathfrak{U}(M)$ - $\mathfrak{B}(\mathbb{R}^k)$ -Meßbarkeit.

Definition 8. d-dimensionale Brownsche Familie ist eine Familie $(W_t)_{t\in I}$ von Abbildungen $W_t: \Omega \to \mathbb{R}^d$ und eine Familie $(P^x)_{x\in \mathbb{R}^d}$ von Wahrscheinlichkeitsmaßen auf (Ω, \mathfrak{A}) , so daß gilt

- (i) für alle $A \in \mathfrak{A}$: $x \mapsto P^x(A)$ universell meßbar,
- (ii) für alle $x \in \mathbb{R}^d$: $(W_t)_{t \in I}$ ist Brownsche Bewegung mit Startwert x auf $(\Omega, \mathfrak{A}, P^x)$.

Konstruktion: siehe oben; hier wird sogar die Borel-Meßbarkeit in (i) erreicht.

Eine Brownsche Familie liefert Brownsche Bewegungen mit beliebigen Startverteilungen gemäß (6).

3.2 Markov-Prozesse

Motivation: "Gedächtnislosigkeit" von Irrfahrten.

Definition 9. \mathbb{R}^d -wertiger adaptierter Prozeß $X = (X_t)_{t \in I}$ heißt Markov-Prozeß mit $Startverteilung \mu$, falls

(i)
$$X_0P = \mu$$
,

 $^{^{14}}$ Es gilt $(\mathfrak{B}(C(I)))^d = \mathfrak{B}(C(I)^d)$, siehe Gänssler, Stute (1977, Satz 1.3.13).

¹⁵Vgl. Faltung.

(ii) für $s, t \geq 0$ und $\Gamma \in \mathfrak{B}(\mathbb{R}^d)$

$$P(\{X_{s+t} \in \Gamma\} \mid \mathfrak{F}_s) = P(\{X_{s+t} \in \Gamma\} \mid X_s).$$

Speziell falls $\mu(\lbrace x \rbrace) = 1$: Markov-Prozeß mit Startpunkt $x \in \mathbb{R}^d$.

Analog für Teilmengen von $[0, \infty[$ als Indexmengen, insbesondere für die diskrete Indexmenge \mathbb{N}_0 .

Proposition 7. Sei X Markov-Prozeß. Setze $\mathfrak{B}_s = \sigma(\{X_u : u \geq s\})$. Dann

(i) für $s \in I$ und $A \in \mathfrak{B}_s$

$$P(A \mid \mathfrak{F}_s) = P(A \mid X_s),$$

(ii) für $s \in I$ und $Y \mathfrak{B}_s$ -meßbar mit $E(|Y|) < \infty$

$$E(Y \mid \mathfrak{F}_s) = E(Y \mid X_s).$$

Beweis. ad (i): siehe Karatzas, Shreve (1999, p. 76, 77).

ad (ii): algebraische Induktion unter Verwendung von (i).

Definition 10. d-dimensionale Markov-Familie ist eine Familie $(X_t)_{t\in I}$ von Abbildungen $X_t: \Omega \to \mathbb{R}^d$ und eine Familie $(P^x)_{x\in \mathbb{R}^d}$ von Wahrscheinlichkeitsmaßen auf (Ω, \mathfrak{A}) , so daß gilt

- (i) für alle $A \in \mathfrak{A}: x \mapsto P^x(A)$ universell meßbar,
- (ii) für alle $x \in \mathbb{R}^d$: $(X_t)_{t \in I}$ ist Markov-Prozeß mit Startwert x auf $(\Omega, \mathfrak{A}, P^x)$,
- (iii) für $x \in \mathbb{R}^d$, $s, t \ge 0$ und $\Gamma \in \mathfrak{B}(\mathbb{R}^d)$ gilt

$$P^{x}(\{X_{s+t} \in \Gamma\} \mid X_{s} = y) = P^{y}(\{X_{t} \in \Gamma\})$$

für $X_s P^x$ f.a. $y \in \mathbb{R}^d$.

Proposition 8. Jede *d*-dimensionale Brownsche Bewegung ist ein Markov-Prozeß. Jede *d*-dimensionale Brownsche Familie ist eine Markov-Familie.

Beweis. Betrachte d-dimensionale Zufallsvektoren X, Y auf $(\Omega, \mathfrak{A}, P)$ und eine σ -Algebra $\mathfrak{G} \subset \mathfrak{A}$. Gelte: X und \mathfrak{G} unabhängig, Y \mathfrak{G} - $\mathfrak{B}(\mathbb{R}^d)$ -meßbar. Dann folgt für $\Gamma \in \mathfrak{B}(\mathbb{R}^d)$

$$P(\{X + Y \in \Gamma\} \mid \mathfrak{G}) = P(\{X + Y \in \Gamma\} \mid Y) \tag{7}$$

und für YP-f.a. $y \in \mathbb{R}^d$

$$P({X + Y \in \Gamma} | Y = y) = P({X + y \in \Gamma}),$$
 (8)

siehe Karatzas, Shreve (1999, p. 121).

Anwendung: $\mathfrak{G} = \mathfrak{F}_s$, $X = W_{s+t} - W_s$, $Y = W_s$. Mit (7) folgt: W ist Markov-Prozeß. Ferner liefert (8)

$$P^{x}(\{W_{s+t} \in \Gamma\} \mid W_{s} = y) = P^{x}(\{W_{s+t} - W_{s} + y \in \Gamma\}).$$

Die Verteilung von $W_{s+t} - W_s + y$ bzgl. P^x ist $N(y, t \operatorname{Id}_d)$ und stimmt folglich mit der Verteilung von W_t bzgl. P^y überein.

Bemerkung 2. Es gilt weder "Markov-Prozeß \Rightarrow Martingal" noch "Martingal \Rightarrow Markov-Prozeß". Gegenbeispiel zur ersten Implikation: Poisson-Prozeß; Beweis siehe oben. Gegenbeispiel zur zweiten Implikation: Übung 6.4.

3.3 Starke Markov-Eigenschaft und Spiegelungsprinzip

Betrachte eine eindimensionale Brownsche Bewegung W bzgl. \mathfrak{F} und ihre Niveauzeiten

$$T_b(\omega) = \inf\{t \in I : W_t(\omega) = b\}, \qquad b \in \mathbb{R}.$$

Diese sind Stoppzeiten, siehe Proposition I.5.(ii).

Fragen: Wie lautet die Verteilung von T_b ? Gilt insbesondere $T_b < \infty$ P-f.s.? Im Falle einer positiven Antwort: ist $(W_{T_b+t}-W_{T_b})_{t\in I}$ eine Brownsche Bewegung und unabhängig von \mathfrak{F}_{T_b} ?

Setze

$$\mathfrak{F}_{t+} = \bigcap_{arepsilon>0} \mathfrak{F}_{t+arepsilon}$$

sowie

$$\mathfrak{F}_{T+} = \{ A \in \mathfrak{A} : \forall \ t \in I : A \cap \{ T \le t \} \in \mathfrak{F}_{t+} \}$$

für optionale Zeiten $T:\Omega\to I\cup\{\infty\}$.

Bemerkung 3.

- (i) $(\mathfrak{F}_{t+})_{t\in I}$ ist rechtsseitig stetige Filtration mit $\mathfrak{F}_t\subset\mathfrak{F}_{t+}$,
- (ii) T optionale Zeit bzgl. $\mathfrak{F} \Leftrightarrow T$ Stoppzeit bzgl. \mathfrak{F}_+
- (iii) \mathfrak{F}_{T+} ist σ -Algebra. Ferner $\mathfrak{F}_T \subset \mathfrak{F}_{T+}$ für Stoppzeiten T.

Definition 11. Optionale Zeit T heißt P-endlich, falls $P(T < \infty) = 1$.

Definition 12. \mathbb{R}^d -wertiger progressiv meßbarer Prozeß $X = (X_t)_{t \in I}$ heißt starker $Markov-Prozeß mit Startverteilung <math>\mu$, falls

- (i) $X_0 P = \mu$,
- (ii) für $t \geq 0$, $\Gamma \in \mathfrak{B}(\mathbb{R}^d)$ und jede P-endliche optionale Zeit S gilt

$$P(\{X_{S+t} \in \Gamma\} \mid \mathfrak{F}_{S+}) = P(\{X_{S+t} \in \Gamma\} \mid X_S).$$

Speziell falls $\mu(\{x\}) = 1$: starker Markov-Prozeß mit Startpunkt $x \in \mathbb{R}^d$.

Definition 13. d-dimensionale starke Markov-Familie ist eine Familie $(X_t)_{t\in I}$ von Abbildungen $X_t: \Omega \to \mathbb{R}^d$ und eine Familie $(P^x)_{x\in \mathbb{R}^d}$ von Wahrscheinlichkeitsmaßen auf (Ω, \mathfrak{A}) , so daß gilt

- (i) für alle $A \in \mathfrak{A}: x \mapsto P^x(A)$ universell meßbar,
- (ii) für alle $x \in \mathbb{R}^d$: $(X_t)_{t \in I}$ ist starker Markov-Prozeß mit Startwert x auf $(\Omega, \mathfrak{A}, P^x)$,

(iii) für $x \in \mathbb{R}^d$, $t \geq 0$, $\Gamma \in \mathfrak{B}(\mathbb{R}^d)$ und jede P^x -endliche optionale Zeit S gilt

$$P^{x}(\{X_{S+t} \in \Gamma\} \mid X_{S} = y) = P^{y}(\{X_{t} \in \Gamma\})$$

für $X_S P^x$ f.a. $y \in \mathbb{R}^d$.

Satz 5. Jede d-dimensionale Brownsche Bewegung ist ein starker Markov-Prozeß. Jede d-dimensionale Brownsche Familie ist eine starke Markov-Familie.

Beweis. Siehe Karatzas, Shreve (1999, Sections 2.6 B, C). \Box

Im folgenden sei W eine d-dimensionale Brownsche Bewegung und S eine P-endliche optionale Zeit.

Satz 6. Durch

$$B_t = W_{S+t} - W_S, \qquad t \in I,$$

wird eine Brownsche Bewegung bezüglich (\mathfrak{F}_t^B) mit Startwert 0 definiert, die unabhängig von \mathfrak{F}_{S+} ist.

Beweis. Siehe Karatzas, Shreve (1999, p. 86, 87). \Box

Satz 7 (Spiegelungsprinzip). Sei S Stoppzeit und d = 1. Durch

$$B_t = \begin{cases} W_t & \text{falls } 0 \le t < S \\ 2W_S - W_t & \text{falls } t \ge S \end{cases}$$

wird eine Brownsche Bewegung bezüglich (\mathfrak{F}_t^B) mit Startwert 0 definiert.

Beweis. Siehe Partzsch (1984, p. 47).

Anwendung: Die Verteilungen der Niveauzeiten T_b und damit der Maxima auf kompakten Intervallen [0,u] für eine eindimensionale Brownsche Bewegung mit Startwert 0. OBdA¹⁶ b>0. Für u>0

$$\begin{split} P(\{T_b \leq u\}) &= P(\{\max_{t \in [0,u]} W_t \geq b\}) \\ &= P(\{T_b \leq u\} \cap \{W_u \leq b\}) + P(\{T_b \leq u\} \cap \{W_u > b\}) \\ &= P(\{T_b \leq u\} \cap \{W_u \leq b\}) + P(\{W_u > b\}). \end{split}$$

Mit Satz 7 folgt

$$P(\{T_b \le u\} \cap \{W_u \le b\}) = P(\{W_u \ge b\}).$$

Fazit

$$P(\lbrace T_b \le u \rbrace) = 2 \cdot P(\lbrace W_u \ge b \rbrace) = \sqrt{\frac{2}{\pi u}} \cdot \int_b^\infty \exp\left(-\frac{y^2}{2u}\right) dy$$
$$= \sqrt{\frac{2}{\pi}} \cdot \int_{b/\sqrt{u}}^\infty \exp\left(-\frac{y^2}{2}\right) dy.$$

 $^{^{16}}$ Mit W ist auch -W Brownsche Bewegung bzgl. derselben Filtration, siehe Proposition 11.

3.4 Brownsche Filtrationen

Die Filtration im kanonischen Modell der Brownschen Bewegung ist nicht rechtsseitig stetig. Ferner existieren in diesem Modell Mengen $A \in \mathfrak{B}(C(I))$ mit $P_*(A) = 0$ und $A \notin \mathfrak{F}_t$ für alle $t \in I$, vgl. Übung 7.2.

Für beliebige Filtrationen $\mathfrak{F} = (\mathfrak{F}_t)_{t \in I}$ setzen wir

$$\mathfrak{F}_{\infty} = \sigma \left(\bigcup_{t \in I} \mathfrak{F}_t \right).$$

Betrachte einen d-dimensionalen Prozeß X auf $(\Omega, \mathfrak{A}, P)$ mit seiner kanonischen Filtration \mathfrak{F}^X . Setze

$$\mathfrak{N}^P = \{ A \subset \Omega : \exists \ B \in \mathfrak{F}_{\infty}^X : A \subset B \land P(B) = 0 \}.$$

Nach Einschränkung von P auf \mathfrak{F}_{∞}^X und anschließender Vervollständigung erhält man ein Wahrscheinlichkeitsmaß auf $\sigma(\mathfrak{F}_{\infty}^X \cup \mathfrak{N}^P)$, welches wieder mit P bezeichnet wird. Durch

$$\mathfrak{F}_t^P = \sigma(\mathfrak{F}_t^X \cup \mathfrak{N}^P), \qquad t \in I,$$

erhält man eine von X und P abhängige Filtration \mathfrak{F}^P , genannt die augmentierte Filtration.

Proposition 9. Für jeden starken Markov-Prozeß erfüllt \mathfrak{F}^P die üblichen Voraussetzungen.

Beweis. Siehe Karatzas, Shreve (1999, p. 90) zum Beweis der rechtsseitigen Stetigkeit. Klar: $\mathfrak{N}^P \subset \mathfrak{F}_0^P$.

Proposition 10. Für jede d-dimensionale Brownsche Bewegung W gilt: W ist auch bzgl. \mathfrak{F}^P eine Brownsche Bewegung.

Beweis. Klar.
$$\Box$$

Somit insbesondere konstruiert: eine Brownsche Bewegung unter den üblichen Voraussetzungen über die Filtration.

Betrachte nun eine Brownsche Familie $(W_t)_{t\in I}, (P^x)_{x\in \mathbb{R}^d}$. Definiere P^μ gemäß (6) sowie

$$\widetilde{\mathfrak{F}}_t = \bigcap_{\mu \in \mathfrak{M}(\mathbb{R}^d)} \mathfrak{F}_t^{\mu}, \qquad t \in I.$$

Klar: die Filtration $\widetilde{\mathfrak{F}}$ ist rechtsseitig stetig und es gilt

$$\mathfrak{F}_t^W \subset \widetilde{\mathfrak{F}}_t \subset \mathfrak{F}_t^{P^{\mu}}.$$

Satz 8. Jede *d*-dimensionale Brownsche Familie $(W_t)_{t\in I}$, $(P^x)_{x\in\mathbb{R}^d}$ ist auch bzgl. der Filtration $(\widetilde{\mathfrak{F}}_t)_{t\in I}$ auf $(\Omega, \widetilde{\mathfrak{F}}_{\infty})$ eine *d*-dimensionale Brownsche Familie.

Beweis. Siehe Karatzas, Shreve (1999, p. 93). Im Beweis läßt sich nur die universelle Meßbarkeit der Abbildungen $x \mapsto P^x(F)$ für alle $F \in \widetilde{\mathfrak{F}}_{\infty}$ zeigen.

Obige Filtration $\widetilde{\mathfrak{F}}$ heißt auch die universelle Filtration der Brownschen Familie.

4 Pfadeigenschaften der Brownschen Bewegung

Im folgenden sei $W = (W_t)_{t \in I}$ eine eindimensionale Brownsche Bewegung mit Startwert 0 auf $(\Omega, \mathfrak{A}, P)$ bzgl. der Filtration $(\mathfrak{F}_t)_{t \in I}$.

Proposition 11 (Symmetrie). $(-W_t)_{t\in I}$ ist Brownsche Bewegung bzgl. $(\mathfrak{F}_t)_{t\in I}$ mit Startwert 0.

Proposition 12 (Skalierungsinvarianz). Für jedes c > 0 definiert

$$X_t = \frac{1}{\sqrt{c}} \cdot W_{c \cdot t}, \qquad t \in I,$$

eine Brownsche Bewegung bzgl. $(\mathfrak{F}_{c\cdot t})_{t\in I}$ mit Startwert 0.

Beweise der nachstehenden Fakten finden sich bei Karatzas, Shreve (1999, Chap. 2.9).

Proposition 13 (Projektive Spiegelung bei $t = \infty$). Durch

$$X_t = \begin{cases} t \cdot W(1/t) & \text{falls } t > 0 \\ 0 & \text{falls } t = 0 \end{cases}$$

wird eine Brownsche Bewegung bzgl. \mathfrak{F}^X mit Startwert 0 definiert.

Proposition 14 (Zeitumkehr). Für jedes T > 0 wird durch

$$X_t = W_T - W_{T-t}, \qquad t \in [0, T],$$

eine Brownsche Bewegung auf [0,T] bzgl. $(\mathfrak{F}_t^X)_{t\in[0,T]}$ mit Startwert 0 definiert.

Proposition 15 (Starkes Gesetz der großen Zahlen).

$$\lim_{t \to \infty} \frac{W_t}{t} = 0 \qquad P\text{-f.s.}$$

Proposition 16 (Gesetz vom iterierten Logarithmus).

$$\limsup_{t \to \infty} \frac{W_t}{\sqrt{2t \cdot \ln \ln t}} = 1 \qquad P\text{-f.s.}$$

Proposition 17 (Hölder-Stetigkeit und Nichtdifferenzierbarkeit). P-f.s. gilt: W in keinem Punkt Hölder-stetig mit Exponent $\gamma > 1/2$.

Vgl. Abschnitt 1.

Proposition 18 (Lévyscher Stetigkeitsmodul).

$$\limsup_{\delta \to 0} \frac{m_1(W; \delta)}{\sqrt{2\delta \cdot \ln \delta^{-1}}} = 1 \qquad P\text{-f.s.}$$

Betrachte die Niveaumengen

$$Z_b(\omega) = \{t \in I : W_t(\omega) = b\}.$$

Proposition 19. P-f.s. gilt: Z_b ist abgeschlossen und unbeschränkt, hat Lebesgue-Maß null besitzt den Häufungspunkt null für b = 0 und keine isolierten Punkte in $]0, \infty[$.

Kapitel III

Stochastische Integration

Literatur:

Karatzas, Shreve (1999, Chap. 3).

Gegeben: Wahrscheinlichkeitsraum $(\Omega, \mathfrak{A}, P)$ mit Filtration¹ $\mathfrak{F} = (\mathfrak{F}_t)_{t \in I}$ für $I = [0, \infty[$, die den üblichen Voraussetzungen genügt, sowie Prozesse $X = (X_t)_{t \in I}$ und $M = (M_t)_{t \in I} \in \mathfrak{M}_2^c$.

Speziell: M = W eindimensionale Brownsche Bewegung mit Startwert 0.

1 Konstruktion des stochastischen Integrals

Die Sätze I.11 und I.12 zeigen in nichttrivialen Fällen² für alle t > 0: P-f.s. ist M von unbeschränkter Variation auf [0, t]. Somit ist eine pfadweise Definition von stochastischen Integralen

$$I_t(X)(\omega) = \int_0^t X_u(\omega) dM_u(\omega), \qquad t \in I, \ \omega \in \Omega,$$

i.a. nicht möglich.

1.1 Integral für einfache Prozesse

Definition 1. X einfach, falls

$$X_t(\omega) = \xi_0(\omega) \cdot 1_{\{0\}}(t) + \sum_{i=0}^{\infty} \xi_i(\omega) \cdot 1_{]t_i, t_{i+1}]}(t)$$
 (1)

mit

$$0 = t_0 < t_1 < \dots, \qquad \lim_{i \to \infty} t_i = \infty$$

 $^{^{1}\}mathrm{Im}$ folgenden Adaptiertheit und Martingaleigenschaft stets bzgl. dieser Filtration.

²Insbesondere für M = W.

und Zufallsvariablen ξ_i auf $(\Omega, \mathfrak{A}, P)$, so daß

$$\sup_{\omega \in \Omega} \sup_{i \in \mathbb{N}_0} |\xi_i(\omega)| < \infty$$

und

$$\forall i \in \mathbb{N}_0: \quad \xi_i \ \mathfrak{F}_{t_i}$$
-meßbar.

Bez.: \mathfrak{L}_0 Vektorraum der einfachen Prozesse. Stochastisches Integral von X gem. (1) bzgl. M auf [0,t]:

$$I_t(X)(\omega) = \sum_{i=0}^{n-1} \xi_i(\omega) \cdot (M_{t_{i+1}}(\omega) - M_{t_i}(\omega)) + \xi_n(\omega) \cdot (M_t(\omega) - M_{t_n}(\omega)),$$

falls $t \in [t_n, t_{n+1}]$.

Also kurz

$$I_t(X) = \sum_{i \in \mathbb{N}_0} \xi_i \cdot (M_{t \wedge t_{i+1}} - M_{t \wedge t_i}).$$

Lemma 1. Sei $A = (A_t)_{t \in I}$ stetig und wachsend. Dann sind äquivalent

(i)
$$\forall 0 \le s < t$$
: $E((M_t - M_s)^2 \mid \mathfrak{F}_s) = E(A_t - A_s \mid \mathfrak{F}_s),$

(ii)
$$A = \langle M \rangle$$
.

Beweis. "(ii) \Rightarrow (i)" siehe Beweis von Satz I.11.

 $(i) \Rightarrow (ii)$: folgt aus

$$E(M_t^2 \mid \mathfrak{F}_s) - M_s^2 = E((M_t - M_s)^2 \mid \mathfrak{F}_s) = E(A_t \mid \mathfrak{F}_s) - A_s$$

und der Eindeutigkeitsaussage für die Doob-Meyer-Zerlegung von M^2 .

Proposition 1.

- (i) $I_t(\cdot)$ ist wohldefiniert und linear auf \mathfrak{L}_0 ,
- (ii) für $X \in \mathfrak{L}_0$ gilt $(I_t(X))_{t \in I} \in \mathfrak{M}_2^c$ und³

$$\langle I(X)\rangle_t = \int_0^t X_u^2 d\langle M\rangle_u,$$

(iii) für $X \in \mathfrak{L}_0$ gilt

$$E(I_t(X)^2) = E\left(\int_0^t X_u^2 d\langle M \rangle_u\right).$$

³Das rechts stehende Integral ist pfadweise definiert.

Beweis. ad (i): klar.

ad (ii): Für $0 \le s < t$ und $i \in \mathbb{N}_0$ gilt⁴

$$E(\xi_i \cdot (M_{t \wedge t_{i+1}} - M_{t \wedge t_i}) \mid \mathfrak{F}_s) = \xi_i \cdot (M_{s \wedge t_{i+1}} - M_{s \wedge t_i}).$$

Hiermit folgt die Martingaleigenschaft von I(X), und jetzt ist klar: $I(X) \in \mathfrak{M}_{2}^{c}$. Durch

$$A_t = \int_0^t X_u^2 \, d\langle M \rangle_u$$

wird offenbar ein wachsender stetiger Prozeß definiert. Zu zeigen bleibt die Martingaleigenschaft von $I(X)^2 - A$. Gelte $s \in [t_{m-1}, t_m[$ und $t \in [t_n, t_{n+1}[$, also $m-1 \le n$.

1. Fall: m - 1 < n. Dann

$$I_t(X) - I_s(X)$$

$$= \xi_{m-1} \cdot (M_{t_m} - M_s) + \sum_{i=m}^{n-1} \xi_i \cdot (M_{t_{i+1}} - M_{t_i}) + \xi_n \cdot (M_t - M_{t_n}).$$

Gelte $0 \leq s < t \leq u < v$ und sei Ybeschränkt und $\mathfrak{F}_u\text{-meßbar}.$ Dann

$$E(Y \cdot (M_v - M_u) \cdot (M_t - M_s) \mid \mathfrak{F}_u) = 0.$$

Mit Lemma 1 folgt

$$E((I_{t}(X) - I_{s}(X))^{2} | \mathfrak{F}_{s})$$

$$= E\left(\xi_{m-1}^{2} \cdot (M_{t_{m}} - M_{s})^{2} + \sum_{i=m}^{n-1} \xi_{i}^{2} \cdot (M_{t_{i+1}} - M_{t_{i}})^{2} + \xi_{n}^{2} \cdot (M_{t} - M_{t_{n}})^{2} | \mathfrak{F}_{s}\right)$$

$$= E\left(\xi_{m-1}^{2} \cdot (\langle M \rangle_{t_{m}} - \langle M \rangle_{s}) + \sum_{i=m}^{n-1} \xi_{i}^{2} \cdot (\langle M \rangle_{t_{i+1}} - \langle M \rangle_{t_{i}}) + \xi_{n}^{2} \cdot (\langle M \rangle_{t} - \langle M \rangle_{t_{n}}) | \mathfrak{F}_{s}\right)$$

$$= E\left(\int_{s}^{t} X_{u}^{2} d\langle M \rangle_{u} | \mathfrak{F}_{s}\right) = E(A_{t} - A_{s} | \mathfrak{F}_{s}). \tag{2}$$

Wende nochmals Lemma 1 an.

2. Fall: m-1=n. Einfacher.

ad (iii): Wähle
$$s = 0$$
 und integriere (2).

1.2 Fortsetzung des Integrals

Wir definieren zunächst I für eine Klasse von Prozessen, die \mathfrak{L}_0 umfaßt, wobei insbesondere die Eigenschaften aus Proposition 1 erhalten bleiben.

Betrachte das durch

$$\mu_M(A) = \int_{\Omega} \int_0^{\infty} 1_A(u,\omega) \, d\langle M \rangle_u(\omega) \, dP(\omega)$$

⁴Fallunterscheidung; siehe auch Übung 3.2.

definierte⁵ Maß⁶ μ_M auf $(I \times \Omega, \mathfrak{B}(I) \otimes \mathfrak{A})$. Im Spezialfall M = W erhält man

$$\mu_W = \lambda \otimes P$$
,

wobei λ das Lebesgue-Maß bezeichnet.

Definition 2. Sei X meßbar und adaptiert. Setze⁷

$$[X]_t^2 = E\left(\int_0^t X_u^2 d\langle M \rangle_u\right)$$

sowie

$$[X] = \sum_{t=1}^{\infty} 2^{-t} \cdot (1 \wedge [X]_t).$$

Bezeichne mit $\mathfrak{L} = \mathfrak{L}(M)$ und $\mathfrak{L}^* = \mathfrak{L}^*(M)$ die Vektorräume der $(\mu_M$ -Äquivalenzklassen von) meßbaren adaptierten bzw. progressiv meßbaren Prozesse X mit $[X]_t < \infty$ für alle $t \in I$.

Klar

$$\mathfrak{L}_0 \subset \mathfrak{L}^* \subset \mathfrak{L}$$
.

Wir betrachten fortan stets die durch [X - Y] definierte Metrik auf \mathfrak{L} .

Lemma 2. Sei X meßbar, adaptiert und beschränkt durch $c \geq 0$. Dann existiert eine Folge $(X^{(n)})_{n \in \mathbb{N}}$ von durch c beschränkten Prozessen in \mathfrak{L}_0 mit

$$\forall t \in I: \quad \lim_{n \to \infty} E\left(\int_0^t (X_u - X_u^{(n)})^2 du\right) = 0.$$

Beweis.

- 1. Fall: X stetig. Interpolation durch Treppenfunktionen, Lebesguescher Grenzwertsatz.
- 2. Fall: X progressiv meßbar. Setze⁸

$$Y_s(\omega) = \int_0^{s \wedge t} X_u(\omega) \, du, \qquad Z_s^{(m)}(\omega) = m \cdot \left(Y_s(\omega) - Y_{(s-1/m) \vee 0}(\omega) \right)$$

für $m \in \mathbb{N}$. Es gilt: Y, $Z^{(m)}$ sind stetig, adaptiert, und damit progressiv meßbar, und $Z^{(m)}$ ist beschränkt durch c. Der Lebesguesche Differentiationssatz sichert

$$\forall \ \omega \in \Omega : \left(\lim_{m \to \infty} Z_{\cdot}^{(m)}(\omega) = X_{\cdot}(\omega) \quad \lambda \text{-f.s.}\right),$$

und deshalb

$$\lim_{m \to \infty} Z^{(m)} = X \quad \lambda \otimes P\text{-f.s.}$$

 $^{^5\}mu_M$ ist wohldefiniert, siehe Gänssler, Stute (1977, Kap. 1.8) oder Übung 8.2.

⁶Previsible σ-Algebra $\mathfrak{P} \subset \mathfrak{B}(I) \otimes \mathfrak{A}$: erzeugt von Mengen der Form $]s,t] \times B$ mit $B \in \mathfrak{F}_s$ sowie $\{0\} \times B$ mit $B \in \mathfrak{F}_0$. Einfache Prozesse sind \mathfrak{P} -meßbar; \mathfrak{P} -meßbare Prozesse sind progressiv meßbar. Siehe Irle (1998, p. 170). Doléans-Ma β : Einschränkung von μ_M auf \mathfrak{P} .

 $^{{}^{7}[}X]_{t}$ ist L_{2} -Norm von $1_{[0,t]} \cdot X$ bzgl. μ_{M} .

⁸Notation: \vee für max.

Mit dem Lebesgueschen Grenzwertsatz folgt

$$\lim_{m \to \infty} E\left(\int_0^t (X_u - Z_u^{(m)})^2 \, du\right) = 0.$$

Approximiere $Z^{(m)}$ geeignet gemäß Fall 1.).

3. Fall: X meßbar, adaptiert. Wir zeigen, daß Y wiederum adaptiert ist. Jeder Prozeß X wie oben besitzt eine progressiv meßbare Modifikation \widetilde{X} , siehe Karatzas, Shreve (1999, Prop. I.1.12). Wir zeigen, daß durch

$$\widetilde{Y}_s(\omega) = \int_0^{s \wedge t} \widetilde{X}_u(\omega) \, du, \qquad s \in I,$$

eine Modifikation des oben definierten Prozesses Y gegeben ist. Betrachte den adaptierten meßbaren Prozeß

$$\eta_s(\omega) = 1_{\{X_s \neq \tilde{X}_s\}}(\omega), \qquad s \in I$$

Es gilt

$$E\left(\int_{0}^{t} \eta_{u} du\right) = \int_{0}^{t} E(\eta_{u}) du = \int_{0}^{t} P(\{X_{u} \neq \widetilde{X}_{u}\}) du = 0$$

und somit

$$P\left(\left\{\int_0^t \eta_u \, du = 0\right\}\right) = 1.$$

Weiterhin

$$\{Y_s \neq \widetilde{Y}_s\} \subset \left\{ \int_0^t \eta_u \, du > 0 \right\}.$$

Also ist \widetilde{Y} eine Modifikation von Y, und unter den üblichen Voraussetzungen ist mit \widetilde{Y} auch Y adaptiert. Fahre fort wie im 2. Fall.

Proposition 2. Für P-f.a. ω sei $\langle M \rangle$. (ω) absolutstetig bzgl. λ . Dann liegt \mathfrak{L}_0 dicht in \mathfrak{L} .

Beweis. Sei $X \in \mathfrak{L}$.

1. Fall: X beschränkt. Sei $(X^{(n)})_{n\in\mathbb{N}}$ gemäß Lemma 2 gewählt. Dann ex. eine Teilfolge $(X^{(n_k)})_{k\in\mathbb{N}}$ und eine Menge $A\in\mathfrak{B}(I)\otimes\mathfrak{A}$ mit

$$\forall (t,\omega) \in (I \times \Omega) \setminus A: \quad \lim_{k \to \infty} X_t^{(n_k)}(\omega) = X_t(\omega)$$

und

$$(\lambda \otimes P)(A) = 0.$$

Es folgt $\mu_M(A) = 0$, und der Lebesguesche Grenzwertsatz zeigt

$$\lim_{k \to \infty} [X - X^{(n_k)}]_t = 0$$

für alle $t \in I$.

2. Fall: X beliebig. Lokalisation. Setze

$$X_t^{(k)} = X_t \cdot 1_{\{|X_t| \le k\}}, \qquad t \in I, \ k \in \mathbb{N}.$$

Es gilt

$$\lim_{k \to \infty} [X - X^{(k)}]_t = 0.$$

Approximiere die beschränkten Prozesse $X^{(k)}$ gem. Fall 1.

Proposition 2 ist insbesondere im Falle M=W anwendbar. Allgemein gilt:

Proposition 3. \mathfrak{L}_0 liegt dicht in \mathfrak{L}^* .

Beweis. Siehe Karatzas, Shreve (1999, p. 135–137).

Definition 3. Für $Y \in \mathfrak{M}_2^c$ sei

$$||Y||_t^2 = E(Y_t^2), \qquad t \in I.$$

sowie

$$||Y|| = \sum_{t=1}^{\infty} 2^{-t} \cdot (1 \wedge ||Y||_t).$$

Beachte: für $Y \in \mathfrak{M}_2^c$ ist $t \mapsto E(Y_t^2)$ monoton wachsend. Wir identifizieren im folgenden ununterscheidbare Elemente aus \mathfrak{M}_2^c .

Proposition 4. \mathfrak{M}_2^c ist ein vollständiger metrischer Raum bzgl. der durch $(Y, Z) \mapsto ||Y - Z||$ definierten Metrik.

Beweis. Übung
$$8.4$$
.

Wir betrachten fortan stets obige Metrik auf \mathfrak{M}_{2}^{c} .

Satz 1. Die in Definition 1 eingeführte lineare Abbildung

$$I:\mathfrak{L}_0\to\mathfrak{M}_2^{\mathrm{c}}$$

läßt sich eindeutig zu einer linearen Abbildung

$$I:\mathfrak{L}^* o\mathfrak{M}_2^{\mathrm{c}}$$

mit

$$\forall \ t \in I: \quad ||I(X)||_t = [X]_t \tag{3}$$

fortsetzen. Es gilt wiederum

$$\langle I(X)\rangle_t = \int_0^t X_u^2 d\langle M\rangle_u.$$

Beweis. Zu $X \in \mathfrak{L}^*$ wähle man gemäß Proposition 3 eine Folge $(X^{(n)})_{n \in \mathbb{N}}$ in \mathfrak{L}_0 mit $\lim_{n \to \infty} [X - X^{(n)}] = 0$. Proposition 1 zeigt

$$||I(X^{(n)}) - I(X^{(m)})|| = ||I(X^{(n)} - X^{(m)})|| = [X^{(m)} - X^{(n)}].$$

so daß Proposition 4 die Existenz des Grenzwertes $\lim_{n\to\infty} I(X^{(n)})$ in \mathfrak{M}_2^c sichert. Wir definieren

$$I(X) = \lim_{n \to \infty} I(X^{(n)})$$

und halten fest, daß I(X) nicht von der Wahl der approximierenden Folge $(X^{(n)})_{n\in\mathbb{N}}$ abhängt. Die Linearität von I sowie (3) sind klar. Ebenso die Eindeutigkeit der Fortsetzung.

Gelte $0 \le s < t$ und sei $A \in \mathfrak{F}_s$. Man erhält⁹ unter Verwendung von (2)

$$\int_{A} (I_t(X) - I_s(X))^2 dP = \lim_{n \to \infty} \int_{A} (I_t(X^{(n)}) - I_s(X^{(n)}))^2 dP$$

$$= \lim_{n \to \infty} \int_{A} \int_{s}^{t} (X_u^{(n)})^2 d\langle M \rangle_u dP$$

$$= \int_{A} \int_{s}^{t} (X_u)^2 d\langle M \rangle_u dP.$$

Also gilt auch für $X \in \mathfrak{L}^*$

$$E((I_t(X) - I_s(X))^2 \mid \mathfrak{F}_s) = E\left(\int_s^t X_u^2 d\langle M \rangle_u \mid \mathfrak{F}_s\right).$$

Wende Lemma 1 an, um $\langle I(X)\rangle_t=\int_0^t X_u^2\,d\langle M\rangle_u$ zu erhalten.

Definition 4. Für $X \in \mathfrak{L}^*$ heißt $(I_t(X))_{t \in I}$ das stochastische Integral (Ito-Integral) von X bzgl. M. Bez:

$$I_t(X) = I_t^M(X) = \int_0^t X_u \, dM_u.$$

Bemerkung 1. Unter den Voraussetzungen von Proposition 2 gilt Satz 1 mit \mathfrak{L} statt \mathfrak{L}^* , so daß das stochastische Integral auf \mathfrak{L} erklärt ist. Die in beiden Fällen gültige Beziehung (3) heißt *Ito-Isometrie*.

Bezeichne mit $\mathfrak{P}^* = \mathfrak{P}^*(M)$ den Vektorraum der (μ_M -Äquivalenzklassen von) progressiv meßbaren Prozessen X mit

$$\forall t \in I: \int_0^t X_u^2 d\langle M \rangle_u < \infty$$
 P-f.s.

Klar

$$\mathfrak{L}_0 \subset \mathfrak{L}^* \subset \mathfrak{P}^*$$

und

$$X$$
 stetig, adaptiert $\Rightarrow X \in \mathfrak{P}^*$.

⁹Aus $Z_n \to Z$ in L_p folgt $E(1_B \cdot Z_n^p) \to E(1_B \cdot Z^p)$.

Es gilt $\mathfrak{L}^*(W) \neq \mathfrak{P}^*(W)$, siehe Übung 9.1.b.

Ziel: Fortsetzung des stochastischen Integrals auf \mathfrak{P}^* . Methode: Lokalisation.

Im folgenden: $X \in \mathfrak{P}^*$. Für Stoppzeiten T sei

$$X_t^{(T)} = \begin{cases} X_t, & \text{falls } t \le T \\ 0, & \text{sonst.} \end{cases}$$

Lemma 3. Für Stoppzeiten S, T gelte $X^{(S)}, X^{(T)} \in \mathfrak{L}^*$. Dann folgt für $t \in I$

$$I_{t \wedge S \wedge T}(X^{(T)}) = I_{t \wedge S \wedge T}(X^{(S)}).$$

Beweis. Für

$$Z = I(X^{(T)}) - I(X^{(S)}) = I(X^{(T)} - X^{(S)}) \in \mathfrak{M}_2^{c}$$

gilt

$$\langle Z \rangle_t = \int_0^t \left(X_u^{(T)} - X_u^{(S)} \right)^2 d\langle M \rangle_u$$

und somit

$$\langle Z \rangle_{S \wedge T} = 0.$$

Mit Übung 4.2 folgt

$$Z_{t \wedge S \wedge T} = 0.$$

Betrachte¹⁰ Stoppzeitenfolge $(T_n)_{n\in\mathbb{N}}$ mit

- (i) $\forall n \in \mathbb{N} : T_n \leq T_{n+1}$,
- (ii) P-f.s. $\lim_{n\to\infty} T_n = \infty$,
- (iii) $\forall n \in \mathbb{N} : X^{(T_n)} \in \mathfrak{L}^*$.

Zu $t \in I$ und $\omega \in \{\lim_{n \to \infty} T_n = \infty\}$ wähle man $n \in \mathbb{N}$ mit $T_n(\omega) \ge t$ und setze

$$I_t(X)(\omega) = I_t(X^{(T_n)})(\omega).$$

Lemma 3 sichert die Unabhängigkeit von der Wahl von n und der Stoppzeitenfolge.

Definition 5. Für $X \in \mathfrak{P}^*$ heißt $(I_t(X))_{t \in I}$ das stochastische Integral (Ito-Integral) von X bzgl. M. Bez. wie oben.

Bemerkung 2. Auf diese Weise: Fortsetzung des stochastischen Integrals auf \mathfrak{P}^* ; I(X) ist stetig und adaptiert mit $I_0(X) = 0$. Ferner $I_{t \wedge T_n}(X) = I_{t \wedge T_n}(X^{(T_n)})$, also

$$I_{\cdot \wedge T_n}(X) \in \mathfrak{M}_2^{\mathrm{c}}.$$

Es gilt jedoch i.a. nicht $I(X) \in \mathfrak{M}_{2}^{c}$, siehe Übung 9.1.b. Siehe auch Karatzas, Shreve (1999, p. 36).

¹⁰Existenz: Übung 9.1.a.

Definition 6. Adaptierter Prozeß $(X_t)_{t\in I}$ lokales Martingal, falls Stoppzeitenfolge $(T_n)_{n\in\mathbb{N}}$ mit (i) und (ii) existiert, so daß $X_{\cdot \wedge T_n}$ Martingal für $n\in\mathbb{N}$.

Also ist I(X) für $X \in \mathfrak{P}^*$ ein lokales Martingal. Siehe Karatzas, Shreve (1999, Sec. 3.2.D) zur Integration bzgl. stetiger lokaler Martingale.

Beispiel 1. Wir bestimmen

$$\int_0^t W_u \, dW_u,$$

also X = M = W. Vorab: W ist progressiv meßbar, und es gilt

$$[W]_t^2 = E\left(\int_0^t W_u^2 du\right) = \int_0^t u du = \frac{1}{2}t^2.$$

Dies zeigt: $W \in \mathfrak{L}^*$.

Für $n \in \mathbb{N}$ und $i \in \mathbb{N}_0$ sei $t_i = t_i^{(n)} = i/2^n \cdot t$. Setze

$$W_u^{(n)} = W_{t_i}, \quad \text{falls } u \in [t_i, t_{i+1}],$$

sowie $W_0^{(n)} = W_0$. Offenbar gilt $W^{(n)} \in \mathfrak{L}^*$, und $W^{(n)}$ ist von der Form (1) aber nicht einfach, da nicht beschränkt. Aus

$$\left[W - W^{(n)}\right]_{t_i}^2 = \sum_{i=0}^{i-1} \int_{t_j}^{t_{j+1}} E(W_u - W_u^{(n)})^2 du = i \cdot \frac{1}{2} (t/2^n)^2 = \frac{i \cdot t^2}{2^{2n+1}}$$

folgt

$$\lim_{n \to \infty} \left[W - W^{(n)} \right] = 0$$

und weiter gem. Satz 1

$$\lim_{n \to \infty} ||I(W) - I(W^{(n)})||_t = 0.$$

Mittels Lokalisation zeigt man¹¹

$$I_t(W^{(n)}) = \sum_{i=0}^{2^{n}-1} W_{t_i} \cdot (W_{t_{i+1}} - W_{t_i}) = \frac{1}{2} \cdot \left(W_t^2 - \sum_{i=0}^{2^{n}-1} (W_{t_{i+1}} - W_{t_i})^2 \right). \tag{4}$$

Schließlich zeigt Übung 6.1

$$\lim_{n \to \infty} E\left(\sum_{i=0}^{2^n - 1} (W_{t_{i+1}} - W_{t_i})^2 - t\right)^2 = 0.$$

Fazit

$$\int_0^t W_u \, dW_u = \frac{1}{2} W_t^2 - \frac{1}{2} t.$$

¹¹Beachte $a(b-a) = \frac{1}{2}((b^2 - a^2) - (b - a)^2).$

Bemerkung 3. Betrachte Zerlegungen $\pi_m = \{t_0^{(m)}, \dots, t_m^{(m)}\}$ mit

$$0 = t_0^{(m)} < \dots < t_m^{(m)} = t,$$
 $\lim_{m \to \infty} \|\pi_m\| = 0.$

Kurz: $t_i = t_i^{(m)}$. Wähle $\lambda \in [0, 1]$, setze

$$\tau_i = \tau_i^{(m)} = (1 - \lambda) \cdot t_i + \lambda \cdot t_{i+1}.$$

 $Dann^{12}$

$$\lim_{m \to \infty} E\left(\sum_{i=0}^{m-1} W_{\tau_i} \cdot (W_{t_{i+1}} - W_{t_i}) - \left(\frac{1}{2}W_t^2 + (\lambda - \frac{1}{2})t\right)\right)^2 = 0.$$

Bei obiger Approximation des Ito-Integrals gem. (4): $\lambda = 0$; genau diese Wahl führt auf ein Martingal. Beim *Stratonovich Integral* wählt man $\lambda = \frac{1}{2}$; dann ergibt sich die Analogie zu

$$\int_0^t f(s) \, df(s) = \frac{1}{2} f^2(t)$$

für $f \in C^1([0, t])$ mit f(0) = 0.

Satz 2. Gelte $M, N \in \mathfrak{M}_2^c$ und $X \in \mathfrak{L}^*(M)$ sowie $Y \in \mathfrak{L}^*(N)$. Dann folgt

$$\langle I^M(X), I^N(Y) \rangle_t = \int_0^t X_u \cdot Y_u \, d\langle M, N \rangle_u, \qquad t \in I.$$

Beweis. Siehe Karatzas, Shreve (1999, p. 144). Im Spezialfall M=N: Ito-Isometrie.

Satz 3. Sei $M \in \mathfrak{M}_2^c$, $X \in \mathfrak{L}^*(M)$ und

$$N_t = \int_0^t X_u \, dM_u, \qquad t \in I.$$

Ferner sei $Y \in \mathfrak{L}^*(N)$. Dann: $XY \in \mathfrak{L}^*(M)$ und

$$\int_0^t Y_u \, dN_u = \int_0^t X_u Y_u \, dM_u, \qquad t \in I.$$

Beweis. Siehe Karatzas, Shreve (1999, p. 145).

2 Die Ito-Formel

Wir betrachten Prozesse X der Form

$$X_t = X_0 + M_t + B_t, \qquad t \in I, \tag{5}$$

wobei

¹²Karatzas, Shreve (1999, p. 148)

- (i) X_0 \mathfrak{F}_0 -meßbar,
- (ii) $M = (M_t)_{t \in I} \in \mathfrak{M}_2^c$
- (iii) $B = (B_t)_{t \in I}$ adaptiert, stetig mit $B_0 = 0$ und von beschränkter Variation auf jedem kompakten Intervall.

Bemerkung 4. Prozesse der Form (5) sind spezielle stetige Semimartingale.¹³ Obige Zerlegung ist eindeutig bis auf Ununterscheidbarkeit, siehe Übung 9.2. In zeitkontinuierlichen Finanzmärkten werden Preisprozesse in der Regel als Semimartingale modelliert.

Beispiel 2. Mit $N \in \mathfrak{M}_2^c$, $Y \in \mathfrak{L}^*(N)$, Z progressiv meßbar und lokal Lebesgue-integrierbar:

$$X_t = X_0 + \int_0^t Y_u \, dN_u + \int_0^t Z_u \, du.$$

Bez.: Ito-Prozeß.

Satz 4. Sei $f: \mathbb{R} \to \mathbb{R}$ zweimal stetig differenzierbar und sei X von der Form (5). Dann folgt

$$f(X_t) = f(X_0) + \int_0^t f'(X_u) dM_u + \int_0^t f'(X_u) dB_u + \frac{1}{2} \int_0^t f''(X_u) d\langle M \rangle_u, \qquad t \in I.$$

Beweisskizze. Vorab: Für k=1,2 sind die Prozesse $f^{(k)} \circ X$ stetig und progressiv meßbar. Die Lebesgue-Stieltjes Integrale bzgl. dB_u und $d\langle M \rangle_u$ sind pfadweise wohldefiniert.

Betrachte Zerlegung $0 = t_0 < \cdots < t_m = t$ von [0,t]. Taylor-Entwicklung

$$f(X_t) - f(X_0) = \sum_{k=1}^m f(X_{t_k}) - f(X_{t_{k-1}})$$

$$= \sum_{k=1}^m f'(X_{t_{k-1}}) \cdot (X_{t_k} - X_{t_{k-1}}) + \frac{1}{2} \sum_{k=1}^m f''(\eta_k) \cdot (X_{t_k} - X_{t_{k-1}})^2,$$

wobei $\eta_k(\omega)$ zwischen $X_{t_{k-1}}(\omega)$ und $X_{t_k}(\omega)$. Unter geeigneten Beschränktheitsvoraussetzungen konvergiert die erste Summe im Quadratmittel gegen

$$\int_0^t f'(X_u) dM_u + \int_0^t f'(X_u) dB_u$$

und die zweite Summe gegen

$$\int_0^t f''(X_u) \, d\langle M \rangle_u.$$

 $^{^{13} \}mathrm{Allgemeiner}:$ stetige lokale Martingale M. Bzgl. Semimartingalen kann man sinnvoll das stochastische Integral erklären.

Letzteres ist plausibel, da B glatter als M ist. Etwas genauer: für jede Zerlegung π wie oben gilt

$$V_t^{(2)}(B;\pi) \le \sup_{k=1,\dots,m} |B_{t_k} - B_{t_{k-1}}| \cdot V_t^{(1)}(B;\pi) \le \left(V_t^{(1)}(B;\pi)\right)^2.$$

Nach Voraussetzung gilt

$$\forall \ \omega \in \Omega \ \exists \ K > 0 : \sup_{\pi} V_t^{(1)}(B; \pi)(\omega) \le K.$$

Wir nehmen an, daß

$$\exists \ K > 0: \quad \sup_{\omega \in \Omega} \ \sup_{\pi} V_t^{(1)}(B; \pi)(\omega) \le K.$$

Dann sichert der Lebesguesche Grenzwertsatz

$$\lim_{n \to \infty} E\left(V_t^{(2)}(B; \pi_n)\right)^2 = 0$$

für alle Folgen von Partitionen mit $\lim_{n\to\infty} \|\pi_n\| = 0$. Im allgemeinen Fall: Lokalisation. Details bei Karatzas, Shreve (1999, p. 149–153).

Beispiel 3. Wähle $f(x) = x^2$, X = M = W und B = 0. Dann¹⁴

$$W_t^2 = \int_0^t 2 \, W_u \, dW_u + t.$$

Bemerkung 5. Man verwendet oft die symbolische Kurzschreibweise

$$df(X_t) = f'(X_t) dM_t + f'(X_t) dB_t + \frac{1}{2} f''(X_t) d\langle M \rangle_t$$

= $f'(X_t) dX_t + \frac{1}{2} f''(X_t) d\langle M \rangle_t$

für die Formel aus Satz 4. Zum Vergleich die Kettenregel der klassischen Differentialrechnung:

$$df(X_t) = f'(X_t) dX_t.$$

Man schreibt kurz $\int Y dX$ für $\int Y dB + \int Y dM$.

Satz 4 enthält die Grundversion der *Ito-Formel*. Allgemeinere Varianten, deren Beweise ähnlich wie der oben skizzierte verlaufen, lauten wie folgt.

Satz 5. Sei $f: I \times \mathbb{R} \to \mathbb{R}$ mit stetigen partiellen Ableitungen

$$f_t = f^{(1,0)}, \quad f_x = f^{(0,1)}, \quad f_{xx} = f^{(0,2)}$$

und sei X von der Form (5). Dann folgt

$$f(t, X_t) = f(0, X_0) + \int_0^t f_t(u, X_u) du + \int_0^t f_x(u, X_u) dM_u + \int_0^t f_x(u, X_u) dB_u + \frac{1}{2} \int_0^t f_{xx}(u, X_u) d\langle M \rangle_u, \qquad t \in I.$$

 $^{^{14} \}mathrm{Die}$ Berechnung von $\int_0^t W_u \, dW_u$ ist jetzt ein Einzeiler, vgl. Bsp. 1

Nun zur Ito-Formel für \mathbb{R}^d -wertige Prozesse X, die komponentenweise von der Form (5) sind. Betrachte Abbildungen $f: I \times \mathbb{R}^d \to \mathbb{R}$ mit stetigen partiellen Ableitungen

$$f^{(1,0)}$$
 mit $0 \in \mathbb{N}_0^d$, $f^{(0,\alpha)}$ mit $\alpha \in \mathbb{N}_0^d$ und $|\alpha| \le 2$.

Die Bezeichnungen f_t , f_{x_i} und $f_{x_ix_j}$ sind kanonisch. Gelte

$$X_t^{(i)} = X_0^{(i)} + M_t^{(i)} + B_t^{(i)}, t \in I, i \in \{1, \dots, d\},$$

so daß $X_0^{(i)}$ \mathfrak{F}_0 -meßbar, $M^{(i)} \in \mathfrak{M}_2^c$, $B^{(i)}$ stetig, adaptiert mit beschränkter Variation auf beliebigen kompakten Intervallen und $B_0^{(i)} = 0$.

Satz 6. Unter obigen Voraussetzung gilt

$$f(t, X_t) = f(0, X_0) + \int_0^t f_t(u, X_u) du$$

$$+ \sum_{i=1}^d \int_0^t f_{x_i}(u, X_u) dM_u^{(i)} + \sum_{i=1}^d \int_0^t f_{x_i}(u, X_u) dB_u^{(i)}$$

$$+ \frac{1}{2} \sum_{i, i=1}^d \int_0^t f_{x_i x_j}(u, X_u) d\langle M^{(i)}, M^{(j)} \rangle_u, \qquad t \in I.$$

Satz 7 (partielle Integration).

$$X_t^{(1)} \cdot X_t^{(2)} = X_0^{(1)} \cdot X_0^{(2)} + \int_0^t X_s^{(1)} dX_s^{(2)} + \int_0^t X_s^{(2)} dX_s^{(1)} + \langle M^{(1)}, M^{(2)} \rangle_t, \qquad t \in I.$$

Beweis. Ito-Formel mit $f(t, x_1, x_2) = x_1 \cdot x_2$.

3 Die geometrische Brownsche Bewegung

Literatur:

Irle (1999, Kap. 8), Bingham, Kiesl (1998, Chap. 4.6).

Für $\alpha \in \mathbb{R}$ und $\sigma, s_0 > 0$ definieren wir $f: I \times \mathbb{R} \to \mathbb{R}$ durch

$$f(t,x) = s_0 \cdot \exp(\alpha t + \sigma x).$$

Sei W eine eindimensionale Brownsche Bewegung mit Startwert 0. Setze $S_t = f(t, W_t)$, also

$$S_t = s_0 \cdot \exp(\alpha t + \sigma W_t), \qquad t \in I.$$

Übung 6.2 behandelt den Spezialfall $\alpha = 0$ und $\sigma = 1$.

Definition 7. Der oben definierte Prozeß $S = (S_t)_{t \in I}$ heißt geometrische Brownsche Bewegung mit Startwert s_0 und Volatilität σ .

Fortan: S geometrische Brownsche Bewegung.

Anwendung der Ito-Formel für X = M = W und B = 0:

$$S_t = S_0 + \alpha \cdot \int_0^t S_u du + \sigma \cdot \int_0^t S_u dW_u + \frac{1}{2}\sigma^2 \cdot \int_0^t S_u du$$
$$= S_0 + \left(\alpha + \frac{1}{2}\sigma^2\right) \cdot \int_0^t S_u du + \sigma \cdot \int_0^t S_u dW_u. \tag{6}$$

Also löst S die stochastische Integralgleichung (6).

Bemerkung 6. Black-Scholes-Modell: ein zeitkontinuierliches Finanzmarktmodell mit zwei Basisgütern¹⁵

- (i) eine festverzinsliche Anlage ("bond") mit kontinuierlicher Verzinsung bei fester Zinsrate $\rho > 0$, ¹⁶
- (ii) eine "Aktie", deren Preisprozeß eine geometrische Brownsche Bewegung ist.

Lemma 4.

S Martingal
$$\Leftrightarrow$$
 $\alpha = -\frac{1}{2}\sigma^2$.

Beweis. Klar: $S \in \mathfrak{L}^*$, so daß I(S) gem. Satz 1 ein Martingal ist. Beachte, daß $\int_0^t S_u du$ einen stetigen, wachsenden, strikt positiven Prozeß definiert, der somit kein Martingal ist.

Definition 8. Drift der geometrischen Brownschen Bewegung S:

$$\mu = \alpha + \frac{1}{2}\sigma^2.$$

Lemma 5. Für $t \in I$ gilt

$$E(S_t) = s_0 \cdot \exp(\mu t), \qquad \operatorname{Var}(S_t) = s_0^2 \cdot \exp(2\mu t) \cdot (\exp(\sigma^2 t) - 1).$$

Beweis. Mit Satz 1 oder elementar.

Lemma 6. Die relativen Inkremente $(S_t - S_s)/S_s$, $0 \le s < t$, sind unabhängig von \mathfrak{F}_s und stationär. Die returns S_t/S_s sind lognormalverteilt.

Beweis. Verwende
$$(S_t - S_s)/S_s = \exp(\alpha (t - s) + \sigma (W_t - W_s)) - 1.$$

Das Donskersche Invarianzprinzip läßt sich auf die geometrische Brownsche Bewegung übertragen. Wir verwenden die Bezeichnungen und Annahmen aus Abschnitt II.2.3. Hier nur der Martingal-Fall mit $s_0 = 1$. Definiere $H: C(I) \to C(I)$ durch

$$(Hf)(t) = \exp(-\frac{1}{2}\sigma^2 t + \sigma f(t)).$$

Dann konvergiert HP_n schwach gegen HP_* ; Beweis Übung 10.4. Klar: HP_* ist die Verteilung der geometrischen Brownschen Bewegung mit Startwert 1, Drift 0 und Volatilität σ , und HP_n ist die Verteilung von $S^{(n)} = HX^{(n)}$.

¹⁵Siehe Beispiel I.2.

¹⁶Also Preisverlauf $t \mapsto c \cdot \exp(\rho t)$; OBdA c = 1.

Es gilt

$$S_t^{(n)}(\omega) = \exp(-\frac{1}{2}\sigma^2 t + \sigma X_t^{(n)}(\omega))$$

und für $t \in [k/n, (k+1)/n]$ mit $k \in \mathbb{N}_0$

$$-\frac{1}{2}\sigma^2 t + \sigma X_t^{(n)} = \sum_{j=1}^k \frac{1}{\sqrt{n}} (\xi_j - \frac{1}{2}\sigma^2/\sqrt{n}) + (t\sqrt{n} - k/\sqrt{n}) \cdot (\xi_{k+1} - \frac{1}{2}\sigma^2/\sqrt{n}).$$

Somit

$$S_t^{(n)} = \prod_{j=1}^k \exp\left(\frac{1}{\sqrt{n}} \left(\xi_j - \frac{1}{2} \sigma^2 / \sqrt{n}\right)\right) \cdot \left(Y_{k+1}^{(n)}\right)^{t \, n - k}.$$

Klar: für jedes $n \in \mathbb{N}$ sind $Y_1^{(n)}, Y_2^{(n)}, \dots$ iid.

Spezialfall: ξ_j zweipunktverteilt. Dann ist $S_{k/n}^{(n)}$, $k \in \mathbb{N}_0$, der Aktienpreisprozeß in einem Cox-Ross-Rubinstein-Modell, siehe Beispiel I.7. Im Falle $P(\{\xi_j=\pm\sigma\})=\frac{1}{2}$ nimmt $Y_j^{(n)}$ jeweils mit Wahrscheinlichkeit $\frac{1}{2}$ die Werte

$$\exp(\pm \sigma/\sqrt{n}) \cdot \exp(-\frac{1}{2}\sigma^2/n)$$

an.

Kapitel IV

Stochastische Differentialgleichungen

Literatur:

Karatzas, Shreve (1999, Chap. 5), Rogers, Williams (2000, Chap. V), Arnold (1973, Kap. 6–10), Friedman (1975).

Die Integralgleichung (III.6) für die geometrische Brownsche Bewegung wird symbolisch in Differentialform

$$dS_t = \mu \cdot S_t dt + \sigma \cdot S_t dW_t, \qquad S_0 = s_0,$$

geschrieben. Man verwendet allgemein stochastische Differentialgleichungen zur Definition von Diffusionsprozessen, insbesondere von Preisprozessen in zeit-kontinuierlichen Finanzmarktmodellen. Im folgenden: $I = [0, \infty[$.

1 Lösungsbegriffe, Existenz und Eindeutigkeit

Gegeben: Borel-meßbare Abbildungen

$$\mu = (\mu_i)_{i=1,\dots,d} : I \times \mathbb{R}^d \to \mathbb{R}^d$$

und

$$\sigma = (\sigma_{i,j})_{\substack{i=1,\dots,d\\j=1,\dots,r}} : I \times \mathbb{R}^d \to \mathbb{R}^{d \times r},$$

wobei $d, r \in \mathbb{N}$, sowie¹

- (a) Wahrscheinlichkeitsraum $(\Omega, \mathfrak{A}, P)$ und darauf
- (b) r-dimensionale Brownsche Bewegung W bzgl. \mathfrak{F}^W mit Startpunkt 0,

¹Existenz für jede vorgegebene Verteilung von ξ : Produktraum.

(c) \mathbb{R}^d -wertiger Zufallsvektor ξ , unabhängig von \mathfrak{F}_{∞}^W .

Für $t \in I$ sei

$$\mathfrak{G}_t = \sigma(\{\xi\} \cup \{W_s : 0 \le s \le t\}),$$

 \mathfrak{N} das System der Nullmengen bzgl. $(\Omega, \mathfrak{G}_{\infty}, P)$ und

$$\mathfrak{F}_t = \sigma(\mathfrak{G}_t \cup \mathfrak{N}).$$

Wir betrachten im folgenden den Wahrscheinlichkeitsraum $(\Omega, \mathfrak{F}_{\infty}, P)$ und halten fest: die Filtration \mathfrak{F} erfüllt die üblichen Voraussetzungen, und W ist auch bzgl. \mathfrak{F} eine Brownsche Bewegung. Siehe Karatzas, Shreve (1999, p. 285) und vgl. Abschnitt II.3.4.

Definition 1. \mathbb{R}^d -wertiger Prozeß $X = (X_t)_{t \in I}$ auf $(\Omega, \mathfrak{F}_{\infty}, P)$ heißt starke Lösung der stochastischen Differentialgleichung

$$dX_t = \mu(t, X_t) dt + \sigma(t, X_t) dW_t \tag{1}$$

mit Anfangsbedingung

$$X_0 = \xi \tag{2}$$

(basierend auf $(\Omega, \mathfrak{A}, P)$, W und ξ), falls

- (i) X adaptiert an \mathfrak{F} ,
- (ii) X besitzt stetige Pfade,
- (iii) für alle $i=1,\ldots,d,\,j=1,\ldots,r$ und $t\in I$ gilt P-f.s.

$$\int_0^t \left(|\mu_i(s, X_s)| + \sigma_{i,j}^2(s, X_s) \right) ds < \infty,$$

(iv) für alle i = 1, ..., d und $t \in I$ gilt²

$$X_t^{(i)} = \xi^{(i)} + \int_0^t \mu_i(s, X_s) \, ds + \sum_{i=1}^r \int_0^t \sigma_{i,j}(s, X_s) \, dW_s^{(j)}.$$

Man bezeichnet³ μ als *Driftkoeffizienten*, und σ als *Diffusionskoeffizienten* der Gleichung (1).

Beispiel 1. Betrachte die Langevin-Gleichung

$$dX_t = \mu \cdot X_t \, dt + \sigma \, dW_t \tag{3}$$

mit Startwert $x \in \mathbb{R}$. Hier: r = d = 1, $\mu \in \mathbb{R}$ und $\sigma > 0$. Setze

$$X_t^{(1)} = \exp(\mu t) = 1 + \underbrace{\exp(\mu t) - 1}_{=B^{(1)}}, \qquad M_t^{(1)} = 0,$$

²Kurz: vektorwertig $X_t = \xi + \int_0^t \mu(s, X_s) ds + \int_0^t \sigma(s, X_s) dW_s$.

³Bezeichnung nicht einheitlich.

und

$$X_t^{(2)} = x + \underbrace{\sigma \int_0^t \exp(-\mu s) dW_s}_{=M_t^{(2)}}, \qquad B_t^{(2)} = 0.$$

Partielle Integration (Satz III.7) liefert

$$X_t^{(1)} \cdot X_t^{(2)} = x + \int_0^t X_s^{(2)} dB_s^{(1)} + \int_0^t X_s^{(1)} dM_s^{(2)}.$$

Es gilt

$$\int_0^t X_s^{(2)} dB_s^{(1)} = \int_0^t X_s^{(2)} \cdot \mu \, \exp(\mu \, s) \, ds = \mu \int_0^t X_s^{(2)} \cdot X_s^{(1)} \, ds,$$

und Satz III.3 zeigt⁴

$$\int_0^t X_s^{(1)} dM_s^{(2)} = \int_0^t X_s^{(1)} \cdot \sigma \, \exp(-\mu \, s) \, dW_s = \sigma \, W_t.$$

Fazit: $X = X^{(1)} \cdot X^{(2)}$ löst die Integralgleichung

$$X_t = x + \mu \int_0^t X_s \, ds + \sigma \int_0^t dW_s.$$

Offenbar ist Y eine starke Lösung von (3) mit Startwert x. Der Prozeß X heißt Ornstein-Uhlenbeck-Prozeß.

Definition 2. Für μ und σ gilt⁵ die *starke Eindeutigkeit*, falls für jede Wahl von (a)–(c) und alle hierauf basierende starke Lösungen X und \widetilde{X} von (1), (2) gilt

X und \widetilde{X} sind ununterscheidbar.

Beispiel 2. Die Lösung der Langevin-Gleichung ist stark eindeutig bestimmt⁶. Betrachte nämlich zwei starke Lösungen X und \widetilde{X} , gemeinsam basierend auf $(\Omega, \mathfrak{A}, P)$, W und ξ und setze $\Delta = X - \widetilde{X}$. Offenbar besitzt Δ P-f.s. stetig differenzierbare Pfade. Es gilt für P-f.a. $\omega \in \Omega$ die gewöhnliche Differentialgleichung

$$\frac{d}{dt}\Delta_t(\omega) = \mu \cdot \Delta_t(\omega)$$

mit der Anfangsbedingung

$$\Delta_0(\omega) = 0.$$

Es folgt $\Delta = 0$ *P*-f.s.

Lemma 1 (Gronwall). Für $\alpha, g : [0, T] \to \mathbb{R}$ gelte: α integrierbar, g stetig und

$$\forall t \in [0, T]: \quad g(t) \le \alpha(t) + \beta \int_0^t g(s) \, ds$$

mit einer Konstanten $\beta \geq 0$. Dann

$$\forall t \in [0, T]: \quad g(t) \le \alpha(t) + \beta \int_0^t \alpha(s) \cdot \exp(\beta(t - s)) ds.$$

⁴Alternative: Verwende Übung 9.4 und die Definition des stochastischen Integrals.

⁵Man spricht auch von starker Eindeutigkeit der Lösung von (1).

⁶Genauer: für $(t,x) \mapsto \mu x$ und $(t,x) \mapsto \sigma$ gilt die starke Eindeutigkeit.

Beweis. Für $h(t) = \exp(-\beta t) \int_0^t g(s) ds$ gilt

$$h'(t) = \exp(-\beta t) \cdot \left(g(t) - \beta \int_0^t g(s) \, ds\right) \le \exp(-\beta t) \cdot \alpha(t).$$

Also

$$h(t) = \int_0^t h'(s) \, ds \le \int_0^t \exp(-\beta \, s) \cdot \alpha(s) \, ds$$

und somit

$$\int_0^t g(s) \, ds \le \int_0^t \alpha(s) \cdot \exp(\beta (t - s)) \, ds.$$

Wir bezeichnen mit $\|\cdot\|$ beliebige Normen auf endlich-dimensionalen Vektorräumen V.

Definition 3. Lokale Lipschitzbedingung (bzgl. der Zustandsvariable) für Abbildung $f: I \times \mathbb{R}^d \to V$

$$\forall \ c > 0 \ \exists \ K > 0 \ \forall \ t \in I, x, y \in \mathbb{R}^d:$$

$$\max(\|x\|, \|y\|) \le c \quad \Rightarrow \quad \|f(t, x) - f(t, y)\| \le K \cdot \|x - y\|.$$

Satz 1.

Lokale Lipschitzbed. für μ und $\sigma \Rightarrow \text{starke Eindeutigkeit für } \mu$ und σ .

Beweis. Hier: r = d = 1. Der allgemeine Fall: Übung.

In einer Situation (a)–(c) seien $X^{(1)}$ und $X^{(2)}$ starke Lösungen von (1), (2). Betrachte die Stoppzeiten

$$S_n = \inf\{t \in I : \max(|X_t^{(1)}|, |X_t^{(2)}|) \ge n\}, \quad n \in \mathbb{N}$$

siehe Proposition I.5.(ii), sowie die durch

$$g_n(t) = E \left| X_{t \wedge S_n}^{(1)} - X_{t \wedge S_n}^{(2)} \right|^2, \quad t \in I,$$

definierten stetigen Funktionen.

Setze

$$z = t \wedge S_n, \quad \delta_u = \mu(u, X_u^{(1)}) - \mu(u, X_u^{(2)}), \quad \Delta_u = \sigma(u, X_u^{(1)}) - \sigma(u, X_u^{(2)}).$$

Dann

$$X_z^{(1)} - X_z^{(2)} = \int_0^z \delta_u \, du + \int_0^z \Delta_u \, dW_u$$

und

$$\left| X_z^{(1)} - X_z^{(2)} \right|^2 \le 2 \cdot \left| \int_0^z \delta_u \, du \right|^2 + 2 \cdot \left| \int_0^z \Delta_u \, dW_u \right|^2.$$

Weiter

$$\left| \int_0^z \delta_u \, du \right|^2 \le \left(\int_0^z |\delta_u| \, du \right)^2 \le z \cdot \int_0^z |\delta_u|^2 \, du \le K_1 \, t \cdot \int_0^t \left| X_{u \wedge S_n}^{(1)} - X_{u \wedge S_n}^{(2)} \right|^2 \, du$$

mit einer nur von n abhängigen Konstanten $K_1 \geq 0$. Es gilt

$$I_{t \wedge S_n}(\Delta) = I_t(\widetilde{\Delta})$$
 für $\widetilde{\Delta}_u(\omega) = \Delta_u(\omega) \cdot 1_{\{u \leq S_n(\omega)\}},$

siehe Karatzas, Shreve (1999, (3.2.24) und p. 147) und vgl. Lemma III.3. Deshalb liefert die Ito-Isometrie

$$E\left|\int_0^z \Delta_u dW_u\right|^2 = E\left(\int_0^t \widetilde{\Delta}_u^2 du\right) = E\left(\int_0^z \Delta_u^2 du\right).$$

Schließlich

$$\int_0^z \Delta_u^2 du \le K_2 \cdot \int_0^z \left| X_u^{(1)} - X_u^{(2)} \right|^2 du \le K_2 \cdot \int_0^t \left| X_{u \wedge S_n}^{(1)} - X_{u \wedge S_n}^{(2)} \right|^2 du$$

mit einer nur von n abhängigen Konstanten $K_2 \geq 0$. Zusammenfassend: mit $K = \max(K_1, K_2)$ erhält man

$$g_n(t) \le 2 K \cdot (1+t) \cdot \int_0^t g_n(u) \, du.$$

Gronwalls Lemma liefert $g_n = 0$, d.h. $X_{t \wedge S_n}^{(1)}$ Modifikation von $X_{t \wedge S_n}^{(2)}$. Da $\lim_{n \to \infty} S_n = \infty$, folgt aus

$$P\left(\left\{X_{t}^{(1)} = X_{t}^{(2)}\right\}\right) \ge P\left(\left\{X_{t \wedge S_{n}}^{(1)} = X_{t \wedge S_{n}}^{(2)}\right\} \cap \left\{S_{n} \ge t\right\}\right) = P\left(\left\{S_{n} \ge t\right\}\right),$$

daß $X^{(1)}$ und $X^{(2)}$ ununterscheidbar sind.

Beispiel 3. Starke Eindeutigkeit für die Gleichungen

$$dX_t = \mu \cdot X_t dt + \sigma dW_t,$$

$$dX_t = \mu \cdot X_t dt + \sigma \cdot X_t dW_t.$$

Definition 4. $f: I \times \mathbb{R}^d \to V$ erfüllt eine

(i) globale Lipschitzbedingung (bzgl. der Zustandsvariable), falls

$$\exists \ K > 0 \ \ \forall \ t \in I, \ x,y \in \mathbb{R}^d: \quad \|f(t,x) - f(t,y)\| \le K \cdot \|x - y\|,$$

(ii) lineare Wachstumsbedingung (bzgl. der Zustandsvariable), falls

$$\exists K > 0 \ \forall t \in I, \ x \in \mathbb{R}^d: \ \|f(t, x)\|^2 \le K \cdot (1 + \|x\|^2).$$

Satz 2. In jeder Situation (a)–(c) gilt

 $E\|\xi\|^2 < \infty \land \text{globale Lipschitz- und lineare Wachstumsbedingung für } \mu \text{ und } \sigma$ $\Rightarrow \text{Existenz einer starken Lsg. von } (1), (2).$

Ferner existiert für alle T>0 eine Konstante C, die nur von T und den Lipschitzund Wachstumskonstanten von μ und σ abhängt, so daß

$$\forall t \in [0, T]: \quad E||X_t||^2 \le C \cdot (1 + E||\xi||^2) \cdot \exp(Ct). \tag{4}$$

Beweis. Hier: r = d = 1.

Picard-Lindelöf-Iteration: setze $X^{(0)} = \xi$ und für $k \in \mathbb{N}_0$

$$X_t^{(k+1)} = \xi + \int_0^t \mu(s, X_s^{(k)}) \, ds + \int_0^t \sigma(s, X_s^{(k)}) \, dW_s, \quad t \in I.$$

Man zeigt induktiv unter Verwendung der linearen Wachstumsbedingung: $X^{(k)}$ ist wohldefiniert, stetig und erfüllt $X^{(k)} \in \mathfrak{L}^*$ sowie für T > 0

$$\exists \ C > 0 \quad \forall \ k \in \mathbb{N} \quad \forall \ t \in [0, T] : \quad E |X_t^{(k)}|^2 \le C \cdot (1 + E|\xi|^2) \cdot \exp(C \, t). \tag{5}$$

siehe Karatzas, Shreve (1999, p. 388).

Beh:

$$P$$
-f.s. konvergiert $(X^{(k)})_{k \in \mathbb{N}}$ gleichmäßig auf jedem Kompaktum. (6)

Betrachte

$$B_t^{(k)} = \int_0^t \left(\mu(s, X_s^{(k)}) - \mu(s, X_s^{(k-1)}) \right) ds$$

und

$$M_t^{(k)} = \int_0^t \left(\sigma(s, X_s^{(k)}) - \sigma(s, X_s^{(k-1)}) \right) dW_s.$$

Klar: $M^{(k)} \in \mathfrak{M}_2^c$.

Wir verwenden eine Momentenungleichung für Martingale, siehe Karatzas, Shreve (1999, p. 166): für p > 0 existieren Konstanten $\Lambda_1, \Lambda_2 > 0$, so daß für jedes $M \in \mathfrak{M}_2^c$ gilt⁷

$$\forall t \in I: \quad \Lambda_1 \cdot E(\langle M \rangle_t^p) \le E\left(\max_{0 \le s \le t} |M_s|^{2p}\right) \le \Lambda_2 \cdot E(\langle M \rangle_t^p).$$

Zusammen mit Satz III.1 und der Lipschitz-Bedingung zeigt dies

$$E\left(\max_{0\leq s\leq t} \left(M_s^{(k)}\right)^2\right) \leq \Lambda_2 \cdot E\left(\int_0^t \left(\sigma(s, X_s^{(k)}) - \sigma(s, X_s^{(k-1)})\right)^2 ds\right)$$
$$\leq \Lambda_2 K_1 \cdot E\left(\int_0^t \left(X_s^{(k)} - X_s^{(k-1)}\right)^2 ds\right).$$

Weiterhin

$$\left(B_t^{(k)}\right)^2 \le t \cdot \int_0^t \left(\mu(s, X_s^{(k)}) - \mu(s, X_s^{(k-1)})\right)^2 ds$$

$$\le K_2 t \cdot \int_0^t \left(X_s^{(k)} - X_s^{(k-1)}\right)^2 ds.$$

Fixiere T > 0, setze $L = 2 \max(K_1, K_2) (\Lambda_2 + T)$. Dann gilt für $t \in [0, T]$

$$\begin{split} E\left(\max_{0\leq s\leq t}\left(X_s^{(k+1)}-X_s^{(k)}\right)^2\right) \leq 2\,E\left(\max_{0\leq s\leq t}\left(M_s^{(k)}\right)^2\right) + 2\,E\left(\max_{0\leq s\leq t}\left(B_s^{(k)}\right)^2\right) \\ \leq L\cdot E\left(\int_0^t\left(X_s^{(k)}-X_s^{(k-1)}\right)^2\,ds\right). \end{split}$$

⁷Allgemeiner für Stoppzeiten.

Für

$$C^* = \max_{0 < t < T} E\left(X_t^{(1)} - \xi\right)^2$$

gilt $C^* < \infty$ wg. (5) und $E(\xi^2) < \infty$. Induktiv folgt

$$E\left(\max_{0 \le s \le t} \left(X_s^{(k+1)} - X_s^{(k)}\right)^2\right) \le C^* \frac{(Lt)^k}{k!},\tag{7}$$

und dies ergibt

$$P\left(\left\{\max_{0\leq s\leq T}\left|X_s^{(k+1)}-X_s^{(k)}\right|>1/2^{k+1}\right\}\right)\leq 4\,C^*\cdot\frac{(4\,L\,T)^k}{k!}.$$

Das Borel-Cantelli-Lemma sichert die Existenz von $\Omega^* \in \mathfrak{F}_{\infty}$ und $N: \Omega \to \mathbb{N}$ meßbar mit $P(\Omega^*) = 1$ und

$$\forall \ \omega \in \Omega^* \ \forall \ n \ge N(\omega): \quad \max_{0 \le s \le T} \left| X_s^{(k+1)} - X_s^{(k)} \right| \le 1/2^{k+1}.$$

Hiermit folgt die Konvergenz (6).

Mit $X(\omega)$ bezeichnen wir den stetigen Grenzwert in Fall $\omega \in \Omega^*$, andernfalls sei $X(\omega) = 0$. Dies ist die gesuchte Lösung.

Genauer: Wir verifizieren die Forderungen aus Definition 1.

ad (i): $1_{\Omega^*}X^{(k)}$ definiert eine Modifikation von $X^{(k)}$, die wiederum adaptiert ist⁸ und punktweise gegen X konvergiert. Also ist X adaptiert.

ad (ii): klar.

ad (iii) : Zunächst erhält man (4) mittels (5) und dem Fatouschen Lemma. Die lineare Wachstumsbedingung liefert (iii).

ad (iv): Die Lipschitz-Bedingung liefert für jedes $t \in I$

$$\lim_{k \to \infty} \int_0^t \mu(s, X_s^{(k)}) \, ds = \int_0^t \mu(s, X_s) \, ds \qquad P\text{-f.s.}$$
 (8)

Da $\left(X_t^{(k)}\right)_{k\in\mathbb{N}}$ gemäß (7) eine Cauchy-Folge in $L_2(P)$ ist, folgt

$$\lim_{k \to \infty} E\left(X_t^{(k)} - X_t\right)^2 = 0.$$

Zusammen mit (5) und dem Fatouschen Lemma ergibt sich

$$\sup_{0 \leq s \leq t} E(X_s^2) \leq \sup_{0 \leq s \leq t} \liminf_{k \to \infty} E\left(\left(X_s^{(k)}\right)^2\right) \leq \sup_{0 \leq s \leq t} \sup_{k \in \mathbb{N}} E\left(\left(X_t^{(k)}\right)^2\right) < \infty.$$

Aufgrund der Ito-Isometrie und der Lipschitzbedingung gilt

$$E\left(\int_0^t \left(\sigma(s, X_s^{(k)}) - \sigma(s, X_s)\right) dW_s\right)^2 = E\left(\int_0^t \left(\sigma(s, X_s^{(k)}) - \sigma(s, X_s)\right)^2 ds\right)$$

$$\leq K \cdot \int_0^t E\left(X_s^{(k)} - X_s\right)^2 ds.$$

⁸Hier gehen die üblichen Voraussetzungen ein.

Man erhält

$$\lim_{k \to \infty} E\left(\int_0^t \left(\sigma(s, X_s^{(k)}) - \sigma(s, X_s)\right) dW_s\right)^2 = 0.$$
 (9)

Kombiniere (8) und (9), um (iv) zu erhalten.

Beispiel 4. Sei X eine eindimensionale Brownsche Bewegung mit Startwert 0 auf $(\Omega, \mathfrak{A}, P)$. Die zugrundeliegende Filtration $\mathfrak{G} = (\mathfrak{G}_t)_{t \in I}$ erfülle die üblichen Voraussetzungen. Definiere

$$\sigma(x) = \begin{cases} 1 & x > 0 \\ -1 & x \le 0 \end{cases}.$$

sowie

$$W_t = \int_0^t \sigma(X_s) dX_s, \qquad t \in I.$$

Es gilt $W \in \mathfrak{M}_2^{\mathrm{c}}$ mit

$$\langle W \rangle_t = \int_0^t \sigma^2(X_s) \, d\langle X \rangle_s = t.$$

Nach der Lévyschen Charakterisierung der Brownschen Bewegung, siehe Übung 10.1, ist W bezüglich $\mathfrak G$ eine eindimensionale Brownsche Bewegung mit Startwert 0.

Satz III.3 zeigt

$$X_t = \int_0^t \sigma(X_s) \, \sigma(X_s) \, dX_s = \int_0^t \sigma(X_s) \, dW_s.$$

Also "löst" X die stochastische Differentialgleichung

$$dX_t = \sigma(X_t) dW_t, \qquad X_0 = 0. \tag{10}$$

Genauer: konstruiere zu W und $\xi = 0$ auf $(\Omega, \mathfrak{A}, P)$ die Filtration \mathfrak{F} wie anfangs dieses Abschnittes beschrieben. Dann

X starke Lösung von (10) basierend auf $(\Omega, \mathfrak{A}, P)$, W und ξ X an \mathfrak{F} adaptiert.

Wir wissen jedoch nur $\mathfrak{F}_t^W \subset \mathfrak{G}_t$ und somit $\mathfrak{F}_t \subset \mathfrak{G}_t$, sowie $\mathfrak{F}_t^X \subset \mathfrak{G}_t$.

Es gilt in jeder Situation (a)-(c), daß (10) keine starke Lösung besitzt.

Annahme: beliebiger Prozeß X sei starke Lösung von (10). Die Lévysche Charakterisierung zeigt, daß X Brownsche Bewegung bzgl. \mathfrak{F} ist, und es gilt⁹

$$W_t = \int_0^t \sigma(X_s) dX_s = |X_t| - \lim_{\varepsilon \to 0} \frac{1}{2\varepsilon} \lambda \{ s \in [0, t] : |X_s| \le \varepsilon \} \qquad P\text{-f.s.},$$

siehe Karatzas, Shreve (1999, p. 205). Also

$$\mathfrak{F}_t^W \subset \mathfrak{F}_t^{|X|},$$

und deshalb

$$\mathfrak{F}_t^X \subset \mathfrak{F}_t \subset \sigma(\mathfrak{F}_t^{|X|} \cup \mathfrak{N}),$$

wobei \mathfrak{N} die Menge der Nullmengen in $(\Omega, \mathfrak{F}_{\infty}, P)$ bezeichnet. Also ist X nicht starke Lösung von (10).

⁹Lokalzeit der Brownschen Bewegung in 0.

Definition 5. Ein Tripel $((\Omega, \mathfrak{A}, P), \mathfrak{F}, (W, X))$ heißt schwache Lösung einer stochastischen Differentialgleichung mit Driftkoeffizient μ und Diffusionskoeffizient σ , falls

- (i) $(\Omega, \mathfrak{A}, P)$ Wahrscheinlichkeitsraum, $\mathfrak{F} = (\mathfrak{F}_t)_{t \in I}$ Filtration in \mathfrak{A} , die den üblichen Voraussetzungen genügt,
- (ii) W Brownsche Bewegung bzgl. \mathfrak{F} ,
- (iii) Forderungen (i)–(iv) aus Definition 1 sind erfüllt mit $\xi = X_0$.

Bemerkung 1. Schwache Lösung in Beispiel 4: $((\Omega, \mathfrak{A}, P), (\mathfrak{G}_t)_{t \in I}, (W, X))$.

Gegeben: $(\Omega^{\ell}, \mathfrak{A}^{\ell}, P^{\ell})$, W^{ℓ} , und ξ^{ℓ} mit den Eigenschaften (a)–(c) für $\ell = 1, 2$. Betrachte die Verteilungen $P_{X^{\ell}}^{\ell}$ von starken Lösungen X^{ℓ} auf $(C(I)^{d}, (\mathfrak{B}(C(I)))^{d})$.

Satz 3.

$$P^1_{\xi^1}=P^2_{\xi^2} \ \land \ E^1\|\xi^1\|^2<\infty \ \land \ \text{glob. Lipschitz- und lin. W'tumsbed. für }\mu$$
 und σ
$$\Rightarrow \qquad \qquad P^1_{X^1}=P^2_{X^2}.$$

Beweisskizze. Für die Approximationen $X^{\ell,n}$ nach Picard-Lindelöf zeigt man induktiv: $P^1_{(W^1,X^{1,n})}=P^2_{(W^2,X^{2,n})}$. Klar: $P^\ell_{X^{\ell,n}}$ konvergiert schwach gegen $P^\ell_{X^\ell}$. Verwende Proposition II.6.

Siehe Karatzas, Shreve (1999, Sec. 5.3, 5.4) zur Existenz und Eindeutigkeit schwacher Lösungen.

2 Starke Lösungen als Diffusionsprozesse

Gegeben: $(\Omega, \mathfrak{A}, P)$, W und ξ gem. (a)–(c) sowie Drift- und Diffusionskoeffizienten μ und σ . Erfüllt seien die globale Lipschitz- und die lineare Wachstumsbedingung für μ und σ sowie $E\|\xi\|^2 < \infty$.

Im folgenden: $0 \le s < t$ und $x \in \mathbb{R}^d$. Setze

$$\mathfrak{F}_t^s = \sigma \big(\sigma(\{W_v - W_u : s \le u < v \le t\}) \cup \{A \in \mathfrak{F}_\infty : P(A) = 0\} \big).$$

Betrachte die starken Lösungen von

$$dX_t = \mu(t, X_t) dt + \sigma(t, X_t) dW_t, \qquad t \ge 0,$$

$$X_0 = \xi$$
 (11)

 und^{10}

$$dX_t^{s,x} = \mu(t, X_t^{s,x}) dt + \sigma(t, X_t^{s,x}) dW_t, \qquad t \ge s, X_s^{s,x} = x.$$
 (12)

¹⁰Rückführung auf (1), (2) durch $\mu(t, y) = 0$ und $\sigma(t, y) = 0$ für t < s sowie $\xi = x$.

Beispiel 5. Für r = d, $\mu = 0$ und $\sigma = \mathrm{Id}_d$ gilt

$$X_t^{s,x} = x + W_t - W_s, \qquad t \ge s.$$

Wir zeigen zunächst, daß X ein Markov-Prozeß ist und bedingte Erwartungen bzgl. X gegeben $X_s = x$ Erwartungen bzgl. $X^{s,x}$ sind.

Lemma 2. \mathfrak{F}_s , \mathfrak{F}_t^s sind unabhängig.

Beweis. Klar.
$$\Box$$

Lemma 3. Für *P*-fast alle $\omega \in \Omega$ gilt

$$X_t^{s,X_s(\omega)}(\omega) = X_t(\omega).$$

Beweis. Folgt aus der Eindeutigkeit der Lösung von (11).

Lemma 4. Die Abbildung

$$\mathbb{R}^d \times \Omega \to \mathbb{R}^d, \qquad (x, \omega) \mapsto X_t^{s,x}(\omega)$$

ist $(\mathfrak{B}(\mathbb{R}^d) \otimes \mathfrak{F}_t^s)$ - $\mathfrak{B}(\mathbb{R}^d)$ -meßbar.

Beweis. Siehe Elliott (1982, Lemma 14.14).

Definition 6. Die Übergangswahrscheinlichkeiten zu (11) sind definiert durch

$$p(s, x, t, A) = P(\lbrace X_t^{s, x} \in A \rbrace), \qquad A \in \mathfrak{B}(\mathbb{R}^d).$$

Lemma 5. $p(s,\cdot,t,\cdot)$ ist ein Markov-Kern auf $(\mathbb{R}^d,\mathfrak{B}(\mathbb{R}^d))$.

Beweis. Folgt mit Lemma 4.

Lemma 6. Sei

$$f: \mathbb{R}^d \times \Omega \to \mathbb{R}$$

beschränkt und $(\mathfrak{B}(\mathbb{R}^d) \otimes \mathfrak{F}_t^s)$ - $\mathfrak{B}(\mathbb{R})$ -meßbar, und sei

$$Y:\Omega\to\mathbb{R}^d$$

 \mathfrak{F}_s - $\mathfrak{B}(\mathbb{R}^d)$ meßbar. Dann gilt

$$E(f(Y(\cdot),\cdot) \mid \mathfrak{F}_s) = q \circ Y,$$

wobei

$$g(y) = \int_{\Omega} f(y, \omega) dP(\omega).$$

Beweis. Algebraische Induktion, Dynkin-System. Verwende Lemma 2.

Satz 4. $(X_t)_{t\in I}$ ist ein Markov-Prozeß bzgl. \mathfrak{F} , und es gilt

$$P(\lbrace X_t \in A \rbrace \mid \mathfrak{F}_s) = p(s, X_s, t, A), \qquad A \in \mathfrak{B}(\mathbb{R}^d).$$

Beweis. Für

$$f(x,\omega) = 1_A(X_t^{s,x}(\omega)), \qquad x \in \mathbb{R}^d, \ \omega \in A,$$

und $Y=X_s$ sind wegen Lemma 4 die Annahmen von Lemma 6 erfüllt. Für die entsprechende Funktion g ergibt sich

$$g(x) = \int_{\Omega} 1_A(X_t^{s,x}(\omega)) \, dP(\omega) = P(\{X_t^{s,x} \in A\}) = p(s,x,t,A),$$

und Lemma 3 sichert

$$f(Y(\omega), \omega) = 1_A(X_t(\omega)).$$

Fazit

$$P(\lbrace X_t \in A \rbrace \mid \mathfrak{F}_s) = E(f(Y(\cdot), \cdot) \mid \mathfrak{F}_s) = p(s, X_s, t, A).$$

Beispiel 6. In der Situation von Beispiel 5 gilt für s < t

$$p(s, x, t, A) = (2\pi (t - s))^{-d/2} \int_A \exp\left(-\frac{|u - x|^2}{2(t - s)}\right) du,$$

wobei $|\cdot|$ die Euklidische Norm auf \mathbb{R}^d bezeichnet. Siehe Übung 6.2 für den Fall $r=d=1, \ \mu(t,x)=x/2$ und $\sigma(t,x)=x$.

Bemerkung 2. Betrachte einen Wahrscheinlichkeitsraum $(\Omega, \mathfrak{A}, P)$ mit Filtration \mathfrak{F} und \mathbb{R}^d -wertigem Markov-Prozeß Y bzgl. \mathfrak{F} . Dann existieren Markov-Kerne $p(s, \cdot, t, \cdot)$ auf $(\mathbb{R}^d, \mathfrak{B}(\mathbb{R}^d))$, so daß für P_{Y_s} -fast alle $x \in \mathbb{R}^d$ gilt

$$\forall A \in \mathfrak{B}(\mathbb{R}^d): \quad P(\{Y_t \in A\} \mid Y_s = x) = p(s, x, t, A).$$

Eindeutigkeit P_{Y_s} -fast sicher. Bez. Übergangswahrscheinlichkeiten. Für $f: \mathbb{R}^d \to \mathbb{R}$ mit $E(|f \circ Y_t|) < \infty$ ergibt sich

$$E(f \circ Y_t | Y_s = x) = \int_{\mathbb{R}^d} f(y) \, p(s, x, t, dy). \tag{13}$$

Siehe: Wahrscheinlichkeitstheorie, reguläre bedingte Warscheinlichkeiten.

Für $0 \le r \le s \le t$ und $A \in \mathfrak{B}(\mathbb{R}^d)$ gilt die Chapman-Kolmogorov-Gleichung

$$p(r, x, t, A) = \int_{\mathbb{R}^d} p(s, y, t, A) p(r, x, s, dy),$$

Beweis Übung 11.3. Siehe Übung 5.2 zur Konstruktion von Markov-Prozessen mit gegebenen Übergangswahrscheinlichkeiten.

Im Spezialfall (11) lautet die Gleichung (13)

$$E(f \circ X_t \mid X_s = x) = E(f \circ X_t^{s,x}). \tag{14}$$

Satz 5. Gelte $E\|\xi\|^{2m} < \infty$ mit $m \in \mathbb{N}$. Dann existiert für jedes T > 0 eine Konstante c > 0 mit

$$\forall s, t \in [0, T]: E||X_t - X_s||^{2m} \le c \cdot |t - s|^m$$

und

$$E\left(\max_{0\le t\le T}\|X_t\|^{2m}\right)\le c.$$

Beweis. Siehe Karatzas, Shreve (1999, p. 306).

Wir studieren nun lokale Eigenschaften von X. Im folgenden: Erwartungswerte von vektor- bzw. matrixwertigen Zufallsvariablen komponentenweise definiert.

Satz 6. Sind μ und σ stetig, so folgt

$$\lim_{t \to s+} \frac{1}{(t-s)^n} \cdot P(\{\|X_t^{s,x} - x\| > \varepsilon\}) = 0 \tag{15}$$

für alle $n \in \mathbb{N}$ und $\varepsilon > 0$ sowie

$$\lim_{t \to s+} \frac{1}{t-s} \cdot E(X_t^{s,x} - x) = \mu(s,x)$$
 (16)

und

$$\lim_{t \to s+} \frac{1}{t-s} \cdot E((X_t^{s,x} - x) \cdot (X_t^{s,x} - x)^T) = a(s,x), \tag{17}$$

wobei

$$a = \sigma \cdot \sigma^T : I \times \mathbb{R}^d \to \mathbb{R}^{d \times d}$$

Beweis. Wähle m > n, beachte

$$P(\{\|X_t^{s,x} - x\| > \varepsilon\}) \le \frac{1}{\varepsilon^{2m}} \cdot E\|X_t^{s,x} - X_s^{s,x}\|^{2m},$$

und verwende Satz 5, um (15) zu erhalten.

Es gilt

$$E(X_t^{s,x} - x) = E\left(\int_s^t \mu(u, X_u^{s,x}) du\right)$$
(18)

sowie aufgrund der Stetigkeit von μ

$$\lim_{t \to s+} \frac{1}{t-s} \cdot \int_s^t \mu(u, X_u^{s,x}) du = \mu(s, x).$$

Deshalb gilt (16), falls $\frac{1}{t-s} \cdot \int_s^t \mu_i(u, X_u^{s,x}) du$ eine gleichgradig integrierbare Familie von Zufallsvariablen ist. Letzteres ergibt sich aus

$$\left(\frac{1}{t-s} \cdot \int_{s}^{t} \mu_{i}(u, X_{u}^{s,x}) du\right)^{2} \leq \frac{1}{t-s} \cdot \int_{s}^{t} \mu_{i}^{2}(u, X_{u}^{s,x}) du$$
$$\leq \frac{K}{t-s} \cdot \int_{s}^{t} (1 + \|X_{u}^{s,x}\|^{2}) du$$

und (4).

Zum Beweis von (17) ist Proposition 1 hilfreich, siehe Friedman (1975, p. 116).

Bemerkung 3. In Verbindung mit (14) zeigt Satz 6

$$E\left(X_{t}^{(i)} - x_{i} \mid X_{s} = x\right) = \mu_{i}(s, x) \cdot (t - s) + o(t - s)$$

und

$$E\left((X_t^{(i)} - x_i) \cdot (X_t^{(j)} - x_j) \mid X_s = x\right) = a_{i,j}(s, x) \cdot (t - s) + o(t - s).$$

Betrachte in diesem Lichte exemplarisch die Brownsche Bewegung, den Ornstein-Uhlenbeck-Prozeß und die geometrische Brownsche Bewegung.

Definition 7. \mathbb{R}^d -wertiger Prozeß X heißt¹¹ Diffusionsprozeß mit Driftkoeffizient b:

¹¹Terminologie nicht einheitlich.

 $I \times \mathbb{R}^d \to \mathbb{R}$ und Kovarianzkoeffizient $a: I \times \mathbb{R}^d \to \mathbb{R}^{d \times d}$, falls gilt

- (i) X besitzt stetig Pfade,
- (ii) X ist Markov-Prozeß (bzgl. \mathfrak{F}^X),
- (iii) die Übergangswahrscheinlichkeiten p von X erfüllen für jedes $\varepsilon > 0$

$$\int_{\{\|y-x\|>\varepsilon\}} p(s,x,t,dy) = o(t-s),$$

$$\int_{\{\|y-x\|\le\varepsilon\}} (y-x) p(s,x,t,dy) = b(s,x) \cdot (t-s) + o(t-s),$$

$$\int_{\{\|y-x\|<\varepsilon\}} (y-x) \cdot (y-x)^T p(s,x,t,dy) = a(s,x) \cdot (t-s) + o(t-s).$$

Satz 7. Sind μ und σ stetig, so ist die starke Lösung von (11) ein Diffusionsprozess mit Driftkoeffizient

$$b = \mu \tag{19}$$

und Kovarianzkoeffizient

$$a = \sigma \cdot \sigma^T. \tag{20}$$

Beweis. Folgt aus den Sätzen 4, 5 und 6 sowie

$$\int_{\{\|y-x\|>\varepsilon\}} \|y-x\|^2 p(s,x,t,dy) \le \frac{1}{\varepsilon^2} \cdot \int_{\mathbb{R}^d} \|y-x\|^4 p(s,x,t,dy).$$

Umkehrung von Satz 7: Darstellung von Diffusionsprozessen als starke bzw. schwache Lösung von stochastischen Differentialgleichungen. Siehe Gihman, Skorohod (1979, Thm. III.1.10) und Rogers, Williams (2000, Chap. V).

Bez.: $C^{1,2}$ Raum der stetigen Abbildungen $u: I \times \mathbb{R}^d \to \mathbb{R}$, die stetige partielle Ableitungen $\frac{\partial u}{\partial t}$, $\frac{\partial u}{\partial x_i}$ und $\frac{\partial^2 u}{\partial x_i \partial x_j}$ auf $]0, \infty[\times \mathbb{R}^d]$ besitzen, welche stetig auf $I \times \mathbb{R}^d$ fortsetzbar sind.

Betrachte den Differentialoperator

$$Lu = \frac{1}{2} \cdot \sum_{i,j=1}^{d} a_{i,j} \cdot \frac{\partial^2 u}{\partial x_i \partial x_j} + \sum_{i=1}^{d} b_i \cdot \frac{\partial u}{\partial x_i}.$$
 (21)

Im folgenden: a und b gemäß (19) und (20) gewählt.

Beispiel 7. Für $r=d, \ \mu=0$ und $\sigma=\mathrm{Id}_d$ (d-dimensionale Brownsche Bewegung) gilt

$$(Lu)(t,x) = \frac{1}{2} \cdot \sum_{i=1}^{d} \frac{\partial^2 u}{\partial x_i^2}(t,x) = \frac{1}{2} \cdot (\Delta u(t,\cdot))(x).$$

Nun r = d = 1 und $\mu(t, x) = \widetilde{\mu} \cdot x$. Für $\sigma = 1$ (Ornstein-Uhlenbeck-Prozeß) gilt

$$(Lu)(t,x) = \frac{1}{2} \cdot \frac{\partial^2 u}{\partial x^2}(t,x) + \widetilde{\mu} \cdot x \cdot \frac{\partial u}{\partial x}(t,x).$$

Für $\sigma(t, x) = \widetilde{\sigma} \cdot x$ (geometrische Brownsche Bewegung) gilt

$$(Lu)(t,x) = \frac{1}{2} \cdot \widetilde{\sigma}^2 \cdot x^2 \cdot \frac{\partial^2 u}{\partial x^2}(t,x) + \widetilde{\mu} \cdot x \cdot \frac{\partial u}{\partial x}(t,x).$$

Proposition 1. Für $u \in C^{1,2}$ gilt

$$u(t, X_t) = u(s, X_s) + \int_s^t \left(Lu + \frac{\partial u}{\partial t} \right) (\tau, X_\tau) d\tau + \sum_{i=1}^d \int_s^t \frac{\partial u}{\partial x_i} (\tau, X_\tau) dM_\tau^{(i)},$$

wobei

$$M^{(i)} = \sum_{\ell=1}^r M^{(i,\ell)} \in \mathfrak{M}_2^{\mathbf{c}}$$

mit

$$M_t^{(i,\ell)} = \int_0^t \sigma_{i,\ell}(s,X_s) \, dW_s^{(\ell)}, \qquad t \geq 0.$$

Beweis. Durch

$$Z_t^{(i)} = \mu_i(t, X_t), \qquad t \ge 0,$$

wird ein progressiv meßbarer, pfadweise lokal integrierbarer Prozeß definiert. Somit definiert

$$B_t^{(i)} = \int_0^t Z_s^{(i)} ds, \qquad t \ge 0,$$

einen adaptierten, pfadweise lokal absolut-stetigen Prozeß. Aus (4) folgt $M^{(i,\ell)} \in \mathfrak{M}_2^c$. Schließlich sichern Satz III.2 und Proposition I.10

$$\langle M^{(i)}, M^{(j)} \rangle_t = \sum_{\ell,m=1}^r \langle M^{(i,\ell)}, M^{(j,m)} \rangle_t = \sum_{\ell,m=1}^r \int_0^t \sigma_{i,\ell}(s, X_s) \cdot \sigma_{j,m}(s, X_s) \, d\langle W^{(\ell)}, W^{(m)} \rangle_s$$
$$= \sum_{\ell=1}^r \int_0^t \sigma_{i,\ell}(s, X_s) \cdot \sigma_{j,\ell}(s, X_s) \, ds = \int_0^t a_{i,j}(s, X_s) \, ds.$$

Wende die Ito-Formel an, siehe Übung 11.4.

Bemerkung 4. Nach Proposition 1 definiert

$$u(t, X_t) - u(0, X_0) - \int_0^t \left(Lu + \frac{\partial u}{\partial t} \right) (\tau, X_\tau) d\tau$$

ein lokales Martingal und etwa im Falle beschränkter Ableitungen $\frac{\partial u}{\partial x_i}$ sogar ein Martingal. Dies führt zu einer abstrakteren Definition von Diffusionsprozessen, siehe Rogers, Williams (2000, p. 111). Die Wahl von $u(t,x) = x_i$ liefert (18), und $u(t,x) = x_i \cdot x_j$ wird im Beweis von (17) verwendet.

Definition 8. $f: \mathbb{R}^d \to \mathbb{R}$ polynomial beschränkt, falls

$$\exists k \in \mathbb{N}_0: \quad \sup_{x \in \mathbb{R}^d} \frac{|f(x)|}{1 + ||x||^k} < \infty.$$

Betrachte die elliptischen Differentialoperatoren

$$L_s f = \frac{1}{2} \cdot \sum_{i,j=1}^d a_{i,j}(s,\cdot) \cdot \frac{\partial^2 f}{\partial x_i \partial x_j} + \sum_{i=1}^d b_i(s,\cdot) \cdot \frac{\partial f}{\partial x_i},$$

vgl. (21) und siehe Beispiel 7.

Satz 8. Sei f zweimal stetig differenzierbar mit polynomial beschränkten zweiten Ableitungen. Ferner seien μ und σ stetig. Dann

$$E(f(X_t^{s,x}) - f(x)) = E\left(\int_s^t L_\tau f(X_\tau^{s,x}) d\tau\right)$$

und

$$\lim_{t \to s+} \frac{1}{t-s} \cdot E(f(X_t^{s,x}) - f(x)) = (L_s f)(x).$$

Beweis. Beachte, daß auch $\frac{\partial f}{\partial x_i}$ (und f) polynomial beschränkt sind. Die erste Identität folgt aus Proposition 1 mit u(t,x)=f(x) und $X=X^{s,x}$. Fahre fort wie im Beweis von Satz 6.

Bemerkung 5. Betrachte die autonome Gleichung¹²

$$dX_t = \mu(X_t) dt + \sigma(X_t) dW_t, \qquad t \ge 0,$$

$$X_0 = \xi,$$
 (22)

wobei μ und σ die globale Lipschitzbedingung erfüllen. Für die zugehörigen Ubergangswahrscheinlichkeiten gilt

$$p(s, x, t, \cdot) = p(0, x, t - s, \cdot),$$

und wir setzen deshalb

$$p(t, x, \cdot) = p(0, x, t, \cdot).$$

Definiere stetige lineare Operatoren

$$T_t: B \to B$$

auf dem Raum Bder beschränkten Borel-meßbaren Abbildungen $f:\mathbb{R}^d\to\mathbb{R}$ durch $T_0=\mathrm{id}$ und

$$(T_t f)(x) = \int_{\mathbb{R}^d} f(y) p(t, x, dy) = E(f \circ X_t | X_0 = x)$$

$$x = \begin{pmatrix} \widetilde{x} \\ t \end{pmatrix} \in \mathbb{R}^{d+1}, \quad \mu(x) = \begin{pmatrix} \widetilde{\mu}(\widetilde{x}, t) \\ 1 \end{pmatrix} \in \mathbb{R}^{d+1}, \quad \sigma(x) = \begin{pmatrix} \sigma(\widetilde{x}, t) \\ 0 \cdots 0 \end{pmatrix} \in \mathbb{R}^{(d+1) \times r}$$

sowie

$$\xi = \begin{pmatrix} \widetilde{\xi} \\ 0 \end{pmatrix} \in \mathbb{R}^{d+1}, \quad X_t = \begin{pmatrix} \widetilde{X}_t \\ t \end{pmatrix} \in \mathbb{R}^{d+1}.$$

¹²Rückführung einer nicht-autonomen Gleichung $d\widetilde{X}_t = \widetilde{\mu}(t, X_t) dt + \widetilde{\sigma}(t, X_t) dW_t$, $\widetilde{X}_0 = \widetilde{\xi}$ auf den autonomen Fall: für $\widetilde{x} \in \mathbb{R}^d$ und $t \in I$ setzt man

für t > 0. Klar:

$$T_t 1_A = p(t, \cdot, A), \qquad A \in \mathfrak{B}(\mathbb{R}^d),$$

und die Chapman-Kolmogorov-Gleichung sichert

$$T_t \circ T_s = T_{s+t}$$
.

Man bezeichnet $(T_t)_{t\geq 0}$ als Halbgruppe der Übergangsoperatoren des Markov-Prozesses X. Nach Satz 8 gilt

$$\lim_{t \to 0} \frac{(T_t f)(x) - f(x)}{t} = (\mathcal{L}f)(x)$$

für

$$\mathcal{L}f = \frac{1}{2} \cdot \sum_{i,j=1}^{d} a_{i,j} \cdot \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}} + \sum_{i=1}^{d} b_{i} \cdot \frac{\partial f}{\partial x_{i}}.$$

Man bezeichnet \mathcal{L} als infinitesimalen Generator der Halbgruppe $(T_t)_{t\geq 0}$.

3 Parabolische und stochastische Differentialgleichungen

Fixiere T > 0.

Bez.: $C_T^{1,2}$ Raum der stetigen Abbildungen $u:[0,T]\times\mathbb{R}^d\to\mathbb{R}$, deren partielle Ableitungen $\frac{\partial u}{\partial t}$, $\frac{\partial u}{\partial x_i}$ und $\frac{\partial^2 u}{\partial x_i\partial x_j}$ auf $]0,T[\times\mathbb{R}^d$ existieren, stetig sind und stetige Fortsetzungen auf $[0,T]\times\mathbb{R}^d$ besitzen.

Betrachte den Differentialoperator L aus (21) mit

 $\forall (t,x) \in [0,T] \times \mathbb{R}^d$: a(t,x) symmetrisch, nichtnegativ definit,

und eine stetige Abbildung

$$\varphi: \mathbb{R}^d \to \mathbb{R}.$$

Gesucht ist eine Lösung

$$u \in C_T^{1,2}$$

der (rückwärts) parabolischen Differentialgleichung

$$Lu = -\frac{\partial u}{\partial t}$$
 auf $[0, T[\times \mathbb{R}^d]$ (23)

mit Endbedingung

$$u(T,\cdot) = \varphi. \tag{24}$$

Definition 9. $u:[0,T]\times\mathbb{R}^d\to\mathbb{R}$ polynomial beschränkt auf $J\times\mathbb{R}^d$ für $J\subset[0,T]$, falls

$$\exists k \in \mathbb{N}_0: \quad \sup_{(t,x) \in J \times \mathbb{R}^d} \frac{|u(t,x)|}{1 + ||x||^k} < \infty.$$

Zu $a:[0,T]\times\mathbb{R}^d\to\mathbb{R}^{d\times d}$ wählen wir $\sigma:[0,T]\times\mathbb{R}^d\to\mathbb{R}^{d\times r}$ mit $a=\sigma\cdot\sigma^T$ und setzen $\mu=b$. Im folgenden vorausgesetzt: μ und σ sind stetig und erfüllen die globale Lipschitzbedingung. Wir betrachten die durch (12) definierten Diffusionsprozesse $(X^{s,x}_t)_{t\in[s,T]}$ für $0\leq s\leq T$ und $x\in\mathbb{R}^d$.

Beispiel 8. Für $a=\sigma=\mathrm{Id}_d$ und $b=\mu=0$ ist (23) die Wärmeleitungsgleichung

$$\frac{1}{2} \cdot \Delta u = -\frac{\partial u}{\partial t}$$
 auf $[0, T] \times \mathbb{R}^d$

mit Zeitumkehr. Ferner gilt $X_t^{s,x} = x + W_t - W_s$, d.h. $X^{s,x}$ ist eine zur Zeit s in x startende d-dimensionale Brownsche Bewegung. Ist φ polynomial beschränkt, so definiert bekanntlich (oder infolge der Sätze 9 und ???)

$$u(s,x) = (2\pi (T-s))^{-d/2} \int_{\mathbb{R}^d} \varphi(y) \cdot \exp\left(-\frac{|y-x|^2}{2(T-s)}\right) dy, \qquad (s,x) \in [0,T[\times \mathbb{R}^d,$$

die eindeutig bestimmte auf $[0,T] \times \mathbb{R}^d$ polynomial beschränkte Lösung von (23), (24). Beachte, daß $u(s,x) = E(\varphi \circ X_T^{s,x})$. Dieser Zusammenhang gilt allgemein.

Satz 9. Sei u eine auf $[0,T] \times \mathbb{R}^d$ polynomial beschränkte Lösung von (23), (24). Dann

$$\forall (s,x) \in [0,T] \times \mathbb{R}^d : u(s,x) = E(\varphi \circ X_T^{s,x}).$$

Beweis. Proposition 1 zeigt für $0 \leq s < t < T$ und $x \in \mathbb{R}^d$

$$u(t, X_t^{s,x}) = u(s, x) + N_t$$

mit einem stetigen lokalen Martingal N. Betrachte die Stoppzeiten

$$T_n = \inf\{\tau \ge s : ||X_\tau|| \ge n\} \land T.$$

Aufgrund der Stetigkeit von a und $\frac{\partial u}{\partial x_i}$ folgt

$$E(N_{t \wedge T_n}) = 0.$$

Also

$$u(s,x) = E(u(t \wedge T_n, X_{t \wedge T_n}^{s,x})).$$

Die Wachstumsbedingung für u sichert

$$|u(t \wedge T_n, X_{t \wedge T_n}^{s,x})| \le c \cdot (1 + n^k)$$

mit Konstanten c>0 und $k\in\mathbb{N}_0$, und aufgrund der Stetigkeit von u und X folgt

$$u(s,x) = E(u(T_n, X_{T_n}^{s,x}))$$

mit dem Lebesgueschen Grenzwertsatz. Die Wachstumsbedingung für φ und der Lebesguesche Grenzwertsatz liefern

$$\lim_{n \to \infty} E\left(u(T_n, X_{T_n}^{s,x}) \cdot 1_{\{T_n = T\}}\right) = E(\varphi \circ X_T^{s,x}).$$

Schließlich gilt

$$E(u(T_n, X_{T_n}^{s,x}) \cdot 1_{\{T_n < T\}}) \le c \cdot (1 + n^k) \cdot P(\{T_n < T\})$$

$$\le c \cdot (1 + n^k) \cdot P(\{\sup_{s \le \tau \le T} ||X_\tau|| \ge n\})$$

$$\le c \cdot (1 + n^k) \cdot n^{-\ell} \cdot E(\sup_{s \le \tau \le T} ||X_\tau||^{\ell})$$

für jedes $\ell \in \mathbb{N}$. Wähle $\ell > k$ und verwende Satz 5, um

$$\lim_{n \to \infty} E(u(T_n, X_{T_n}^{s,x}) \cdot 1_{\{T_n < T\}}) = 0$$

zu erhalten. \Box

Bemerkung 6. Satz 9 zeigt, daß jede polynomial beschränkte Lösung von (23), (24) eine stochastische Darstellung besitzt. Der Eindeutigkeitssatz 3 sichert, daß die Verteilung von $X^{s,x}$ nur von s und x sowie von μ und σ abhängt. Also haben wir mit probabilistischen Methoden gezeigt, daß (23), (24) für jede polynomial beschränkte Abbildung φ höchstens eine polynomial beschränkte Lösung besitzt.

Ein klassischer Text zur Analyse parabolischer Gleichungen mit deterministischen Methoden ist Friedman (1964).

Bemerkung 7. Falls a und b gewissen Glattheits- und Wachstumsbedingungen genügen, existiert eine Abbildung

$$\Gamma : \{(s, x, t, y) \in ([0, T] \times \mathbb{R}^d)^2 : s < t\} \to \mathbb{R},$$

so daß

$$\forall (t,y) \in]0,T] \times \mathbb{R}^d: \quad L\Gamma(\cdot,\cdot,t,y) = -\frac{\partial \Gamma(\cdot,\cdot,t,y)}{\partial s}$$
 (25)

und für jede polynomial beschränkte Funktion φ

$$\lim_{s \to t-} \int_{\mathbb{R}^d} \varphi(y) \cdot \Gamma(s, x, t, y) \, dy = \varphi(x)$$

gilt. Die Abbildung Γ heißt Fundamentallösung zu (23), und (25) heißt Kolmogorov-Rückwärtsgleichung. Man erhält zu jeder polynomial beschränkten Abbildung φ durch

$$u(s,x) = \int_{\mathbb{R}^d} \varphi(y) \cdot \Gamma(s,x,T,y) \, dy, \qquad (s,x) \in [0,T[\times \mathbb{R}^d,$$

eine auf $[0,T] \times \mathbb{R}^d$ polynomial beschränkte Lösung von (23), (24). Siehe Friedman (1964, Chap. 1).

Fazit: unter den o.n.g. Voraussetzungen ist $\Gamma(s,x,t,\cdot)$ die Dichte der Verteilung von $X_t^{s,x}$.

Beispiel 9. Die Übergangsdichten der *d*-dimensionalen Brownschen Bewegung bilden eine Fundamentallösung für $L = \frac{1}{2} \cdot \Delta$.

Satz 10 (Feynman-Kac-Formel). Seien

$$h: [0,T] \times \mathbb{R}^d \to [0,\infty[$$

und

$$g:[0,T]\times\mathbb{R}^d\to\mathbb{R}$$

stetig. Ferner seien g und die Lösung $u \in C^{1,2}_T$ von

$$Lu + g = -\frac{\partial u}{\partial t} + h \cdot u$$
 auf $[0, T] \times \mathbb{R}^d$

und

$$u(T,\cdot) = \varphi$$

auf $[0,T]\times \mathbb{R}$ polynomial beschränkt. Dann gilt für $(s,x)\in [0,T]\times \mathbb{R}^d$

$$u(s,x) = E\left(\varphi(X_T^{s,x}) \cdot \exp\left(-\int_s^T h(t, X_t^{s,x}) dt\right) + \int_s^T g(t, X_t^{s,x}) \cdot \exp\left(-\int_s^t h(\tau, X_\tau^{s,x}) d\tau\right) dt\right).$$

Beweis. Ähnlich dem von Satz 9. Siehe Karatzas, Shreve (1999, Thm. 5.7.6).

Nun: eine Existenzaussage mit probabilistischen Methoden.

Anhang A

Funktionen von beschränkter Variation und das Lebesgue-Stieltjes-Integral

Literatur:

Floret (1981), Heuser (2001).

Für $f : \mathbb{R} \to \mathbb{R}$ und a < b setzen wir

$$V_a^b(f) = \sup \left\{ \sum_{k=1}^m |f(t_k) - f(t_{k-1})| : m \in \mathbb{N}, \ a = t_0 < \dots < t_m = b \right\}.$$

Definition 1. f von beschränkter Variation (b. V.), falls

$$\forall \ a < b : V_a^b(f) < \infty.$$

 ${\bf Satz}~{\bf 1}$ (Jordanscher Zerlegungssatz). Äquivalent sind

- (i) f b.V. (und rechtsseitig stetig),
- (ii) $\exists f_1, f_2$ monoton wachsend (und rechtsseitig stetig) mit $f = f_1 f_2$.

Zu f b.V. und rechtsseitig stetig sowie f_1, f_2 wie oben erhält man ein signiertes Maß μ_f auf $\{A \in \mathfrak{B}(\mathbb{R}) : A \text{ beschränkt}\}$ per

$$\mu_f(]u,v]) = (f_1(v) - f_1(u)) - (f_2(v) - f_2(u)), \qquad u < v.$$

Satz 2 (Rieszscher Darstellungssatz auf \mathbb{R}). Durch

$$f \mapsto \mu_f$$

wird eine lineare Bijektion

 $\{f:f \text{ b.V. und rechtsseitig stetig},\ f(0)=0\} \to \{\mu:\mu \text{ signiertes Maß auf }\mathfrak{B}(\mathbb{R})\}$ definiert.

Integrale bzgl. signierter Maße werden als Differenz der Integrale bzgl. des Positivund des Negativteils des Maßes definiert. Betrachten wir ohne Einschränkung ein signiertes Maß μ_f mit $f = f_1 - f_2$ wie oben, so ist dessen Positiv- und Negativteil durch μ_{f_1} und μ_{f_2} , also durch die nicht-negativen Maße mit den Verteilungsfunktionen f_1 und f_2 gegeben.

Falls für eine meßbare Funktion $g:\mathbb{R}\to\mathbb{R}$ mit kompaktem Träger die Integrale bezüglich μ_{f_1} und μ_{f_2} existieren, bezeichnet man

$$\int_{\mathbb{R}} g \, df = \int_{\mathbb{R}} g \, d\mu_f = \int_{\mathbb{R}} g \, d\mu_{f_1} - \int_{\mathbb{R}} g \, d\mu_{f_2}$$

als Lebesgue-Stieltjes Integral von g bzgl. f. Im Spezialfall einer stetigen Funktion g mit kompaktem Träger liegt ein sogenanntes Riemann-Stieltjes-Integral vor, das sich als Grenzwert von Riemann-Stieltjes-Summen berechnen laßt.

Anhang B

Mehrdimensionale Normalverteilungen

Für einen d-dimensionalen Zufallsvektor

$$X = (X_1, \dots, X_d)^{\top}$$

mit quadratisch-integrierbaren Komponenten X_i definiert man seinen $\mathit{Erwartungswert}$ durch

$$E(X) = \begin{pmatrix} E(X_1) \\ \vdots \\ E(X_d) \end{pmatrix} \in \mathbb{R}^d$$

und seine Kovarianzmatrix durch

$$Cov(X) = \begin{pmatrix} Cov(X_1, X_1) & \dots & Cov(X_1, X_d) \\ \vdots & & \vdots \\ Cov(X_d, X_1) & \dots & Cov(X_d, X_d) \end{pmatrix} \in \mathbb{R}^{d \times d}$$

mit

$$Cov(X_i, X_j) = E((X_i - E(X_i)) \cdot (X_j - E(X_j))).$$

In Verallgemeinerung der Rechenregeln für den Erwartungswert und die Varianz einer reellwertigen Zufallsvariablen gilt dann

$$E(LX + b) = LE(X) + b$$

und

$$Cov(LX + b) = L Cov(X)L^{\top}$$

für jede Matrix $L \in \mathbb{R}^{k \times d}$ und jeden Vektor $b \in \mathbb{R}^k$. Die letzte Gleichung liefert insbesondere für jeden Vektor $v \in \mathbb{R}^d = \mathbb{R}^{d \times 1}$

$$0 \le \sigma^2(v^\top X) = v^\top \operatorname{Cov}(X) v,$$

so daß jede Kovarianzmatrix symmetrisch und nicht-negativ definit ist.

Das Wahrscheinlichkeitsmaß auf \mathbb{R}^d mit der Lebesgue-Dichte

$$\rho(x) = (2\pi)^{-d/2} \exp(-(x_1^2 + \dots + x_d^2)/2)$$

für $x \in \mathbb{R}^d$ heißt d-dimensionale Standard-Normalverteilung. Die Dichte ρ ist das d-fache Tensorprodukt der Dichte der eindimensionalen Standard-Normalverteilung. Ein d-dimensionaler Zufallsvektor X ist deshalb genau dann d-dimensional standard-normalverteilt, wenn er unabhängige, jeweils eindimensional standard-normalverteilte Komponenten besitzt. Insbesondere gilt in diesem Fall

$$E(X) = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix} \in \mathbb{R}^d \quad \text{und} \quad \text{Cov}(X) = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & 0 & \dots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \dots & 0 & 1 & 0 \\ 0 & \dots & \dots & 0 & 1 \end{pmatrix} \in \mathbb{R}^{d \times d}.$$

Ein Wahrscheinlichkeitsmaß Q auf \mathbb{R}^k heißt k-dimensionale Normalverteilung, falls Q sich durch eine affin-lineare Transformation aus einer d-dimensionalen Standard-Normalverteilung ergibt. Eine k-dimensionale Normalverteilung ist also die Verteilung eines k-dimensionalen Zufallsvektors Y von der Form

$$Y = LX + b \tag{1}$$

mit einem d-dimensional standard-normalverteilten Zufallsvektor X, einer Matrix $L \in \mathbb{R}^{k \times d}$ und einem Vektor $b \in \mathbb{R}^k$.

Ist Y von der Form (1), so gilt

$$E(Y) = b$$
 und $Cov(Y) = LL^{\top}$,

und diese beiden Größen bestimmen die Verteilung Q von Y bereits eindeutig, siehe Irle (2001, p. 127 ff.) und Gänssler, Stute (1977, Abschnitt 1.19)

$$\Sigma = LL^{\top} \tag{2}$$

heißt Q dann die k-dimensionale Normalverteilung mit Erwartungswert b und Kovarianzmatrix Σ .

Jede symmetrische nicht-negativ definite Matrix $\Sigma \in \mathbb{R}^{k \times k}$ ist diagonalisierbar mit nicht-negativen Eigenwerten und somit in der Form (2) darstellbar. Also treten genau die symmetrischen nicht-negativ definiten Matrizen als Kovarianzmatrizen von Normalverteilungen auf.

Literatur

- R. J. Adler, The Geometry of Random Fields, Wiley, Chichester, 1981.
- L. Arnold, Stochastische Differentialgleichungen, Oldenbourg, München, 1973.
- K. L. Chung, A Course in Probability Theory, Academinc Press, New York, 1974.
- K. L. Chung, R. J. Williams, Introduction to Stochastic Integration, Birkhäuser, Boston, 1990.
- R. J. Elliott, Stochastic Calculus and Applications, Springer, New York, 1982.
- K. Floret, Maß- und Integrationstheorie, Teubner, Stuttgart, 1981.
- A. Friedman, Partial Differential Equations of Parabolic Type, Prentice-Hall, Englewood Cliffs, 1964.
- A. Friedman, Stochastic Differential Equations and Applications, Vol. 1, Academic Press, New York, 1975.
- P. Gänssler, W. Stute, Wahrscheinlichkeitstheorie, Springer-Verlag, Berlin, 1977.
- I. I. Gihman, A. V. Skorohod, The Theory of Stochastic Processes III, Springer, Berlin, 1979.
- H. Heuser, Lehrbuch der Analysis, Teil 1, Teubner, Stuttgart, 2001.
- I. Karatzas, S. E. Shreve, Brownian Motion and Stochastic Calculus, Springer-Verlag, New York, 1999.
- K. R. Parthasarathy, Probability Measures on Metric Spaces, Academic Press, New York, 1967.
- L. Partzsch, Vorlesungen zum eindimensionalen Wienerschen Prozeß, Teubner, Leipzig, 1984.
- P. Protter, Stochastic Integration and Differential Equations, Springer-Verlag, 1990.
- L. C. G. Rogers, D. Williams, Diffusions, Markov Processes and Martingales, Vol. 2, Cambridge Univ. Press, 2000.
- J. Yeh, Martingales and Stochastic Analysis, World Scientific, Singapore, 1995.

sowie

- N. H. Bingham, R. Kiesel, Risk-Neutral Valuation, Springer-Verlag, London, 1998.
- N. A. C. Cressie, Statistics for Spatial Data, Wiley, New York, 1993.
- E. Eberlein, Grundideen moderner Finanzmathematik, DMV-Mitteilungen 3/98, 10-20, 1998.
- H. Föllmer, Ein Nobelpreis für Mathematik?, DMV-Mitteilungen 1/98, 4–7, 1998.
- H.-O. Georgii, Gibbs Measures and Phase Transitions, de Gruyter, Berlin, 1988.
- P. E. Kloeden, E. Platen, Numerical Solution of Stochastic Differential Equations, Springer, Berlin, 1995.
- A. Irle, Finanzmathematik, Teubner, Stuttgart, 1998.
- G. Winkler, Image Analysis, Random Fields and Dynamic Monte Carlo Methods, Springer-Verlag, Berlin, 1995.