Stochastische Analysis

Klaus Ritter

Darmstadt, SS 2009

Vorkenntnisse

Wahrscheinlichkeitstheorie.

Literatur

Insbesondere:

I. Karatzas, S. E. Shreve, Brownian Motion and Stochastic Calculus, Springer-Verlag, New York, 1999.

Inhaltsverzeichnis

Ι	Stochastische Prozesse			1
	1	Grundlegende Definitionen		1
		1.1 Stochastische Prozesse und Filtrationen		1
		1.2 Stoppzeiten		4
	2	Der Poisson-Prozeß		7
	3	Martingale		9
		3.1 Martingale in diskreter Zeit		9
		3.2 Martingale in stetiger Zeit		13
	4	Der Kolmogorovsche Konsistenzsatz		21

Kapitel I

Stochastische Prozesse

Literatur:

Karatzas, Shreve (1999, Chap. 1).

1 Grundlegende Definitionen

1.1 Stochastische Prozesse und Filtrationen

Definition 1. Gegeben: Wahrscheinlichkeitsraum $(\Omega, \mathfrak{A}, P)$, Meßraum (S, \mathfrak{S}) sowie Menge I.

- (i) Stochastischer Proze β mit Zustandsraum (S,\mathfrak{S}) und Parametermenge I: Familie $X = (X_t)_{t \in I}$ von $\mathfrak{A}\text{-}\mathfrak{S}\text{-meßbaren Abbildungen}^1$ $X_t : \Omega \to S$.
- (ii) Trajektorie (Pfad, Realisierung) von X: Abbildung $I \to S$, $t \mapsto X_t(\omega)$ mit festem $\omega \in \Omega$.

Beispiel 1.

- (i) $I = \mathbb{N}_0$: Grenzwertsätze der Stochastik, zeit-diskrete Martingaltheorie, siehe "Probability Theory".
- (ii) $I = \{1, \dots, n\}^2$: Bildverarbeitung, siehe Winkler (1995).
- (iii) $I = \mathbb{Z}^d$: statistische Physik, siehe Georgii (1988).
- (iv) $I = \mathbb{R}^d$: Geostatistik, siehe Cressie (1993).

Fortan,² bis auf Abschnitt 4,

$$I \subset \mathbb{R}, \quad S = \mathbb{R}^d, \quad \mathfrak{S} = \mathfrak{B}(\mathbb{R}^d)$$
 Borelsche σ -Algebra.

In erster Linie

$$I = [0, t_0]$$
 bzw. $I = [0, \infty[$.

¹Alternative Schreibweisen: X(t), $X(t, \cdot)$.

²Notation: Inklusion ⊂ nicht notwendig strikt.

Beispiel 2. Finanzmarkt mit d Finanzgütern. Modelliert durch Preisprozeß X: für $j \in \{1, \ldots, d\}$ ist $X_{j,t}$ der Preis des j-ten Finanzgutes zur Zeit $t \in I$.

Gegeben: Prozesse $X = (X_t)_{t \in I}$ und $Y = (Y_t)_{t \in I}$ auf $(\Omega, \mathfrak{A}, P)$.

Definition 2.

(i) X und Y ununterscheidbar, falls P-f.s.³

$$\forall t \in I : X_t = Y_t.$$

(ii) Y Modifikation (Version) von X, falls

$$\forall t \in I : P(\{X_t = Y_t\}) = 1.$$

(iii) X und Y besitzen dieselben endlich-dimensionalen Randverteilungen, falls⁴

$$\forall n \in \mathbb{N} \quad \forall t_1, \dots, t_n \in I \quad \forall B \in \mathfrak{B}(\mathbb{R}^{nd}) :$$
$$P(\{(X_{t_1}, \dots, X_{t_n}) \in B\}) = P(\{(Y_{t_1}, \dots, Y_{t_n}) \in B\}).$$

Bemerkung 1. Klar: (i) \Rightarrow (ii) \Rightarrow (iii). Umkehrungen i.a. falsch. Jedoch: (i) \Leftrightarrow (ii), falls X und Y P-f.s. rechtsseitig (linksseitig) stetige Pfade besitzen. Siehe Übung 1.1, 1.2.

Definition 3.

(i) Filtration: Familie $\mathfrak{F} = (\mathfrak{F}_t)_{t \in I}$ von σ -Algebren $\mathfrak{F}_t \subset \mathfrak{A}$ mit

$$\forall s, t \in I : s < t \Rightarrow \mathfrak{F}_s \subset \mathfrak{F}_t$$

- (ii) X adaptiert zu Filtration \mathfrak{F} , falls X_t \mathfrak{F}_t - \mathfrak{S} -meßbar für alle $t \in I$.
- (iii) Kanonische Filtration zu X:

$$\mathfrak{F}_t^X = \sigma\left(\left\{X_s : s \le t\right\}\right), \qquad t \in I$$

Bemerkung 2. Klar: \mathfrak{F}^X ist die kleinste Filtration, zu der X adaptiert ist.

Proposition 1. Gegeben: Menge Ω_1 und Meßraum $(\Omega_2, \mathfrak{A}_2)$. Für Abbildungen U: $\Omega_1 \to \Omega_2, V: \Omega_1 \to \mathbb{R}$ sind äquivalent

- (i) V ist $\sigma(\{U\})$ - $\mathfrak{B}(\mathbb{R})$ -meßbar,
- (ii) $\exists g: \Omega_2 \to \mathbb{R}: g \mathfrak{A}_2\text{-}\mathfrak{B}(\mathbb{R})\text{-meßbar} \land V = g \circ U.$

Beweis. (ii) \Rightarrow (i): klar. (i) \Rightarrow (ii): Algebraische Induktion, d.h. zunächst für Elementarfunktionen, dann für nicht-negative meßbare Funktionen über monotone Limiten, schließlich der allgemeine Fall durch Zerlegung in Positiv- und Negativteil. Details im Skript "Probability Theory".

³Eigenschaft a gilt P-f.s.: $\exists A \in \mathfrak{A} : P(A) = 1 \land A \subset \{\omega \in \Omega : \omega \text{ erfüllt } a\}.$

⁴Analog für Prozesse auf verschiedenen Wahrscheinlichkeitsräumen.

Bemerkung 3. Setze⁵⁶ $\Omega_2 = S^{[0,t]}$, $\mathfrak{A}_2 = \mathfrak{S}^{[0,t]}$, definiere $U: \Omega \to \Omega_2$ durch

$$(U(\omega))(s) = X_s(\omega).$$

Dann $\sigma(\{U\}) = \mathfrak{F}_t^X$, denn für jede σ -Algebra \mathfrak{A}' in Ω gilt

$$U\ \mathfrak{A}'\text{-}\mathfrak{A}_2\text{-meßbar}\quad\Leftrightarrow\quad\forall\ s\in[0,t]:X_s\ \mathfrak{A}'\text{-}\mathfrak{S}\text{-meßbar}\quad\Leftrightarrow\quad\mathfrak{F}^X_t\subset\mathfrak{A}'.$$

Somit für $A \subset \Omega$

$$A \in \mathfrak{F}_t^X \quad \Leftrightarrow \quad \exists \ B \in \mathfrak{A}_2 : A = U^{-1}(B).$$

Für $V:\Omega\to\mathbb{R}$ zeigt Proposition 1, daß V genau dann \mathfrak{F}_t^X - $\mathfrak{B}(\mathbb{R})$ -meßbar ist, wenn

$$\forall \ \omega \in \Omega : \quad V(\omega) = g\left(X_{\cdot}(\omega)|_{[0,t]}\right)$$

mit einer \mathfrak{A}_2 - $\mathfrak{B}(\mathbb{R})$ -meßbaren Abbildung $g:S^{[0,t]}\to\mathbb{R}.$

Beispiel 3. Filtration \mathfrak{F} beschreibt den Informationsverlauf in einem Finanzmarkt, alle "Aktionen" zur Zeit $t \in I$ müssen \mathfrak{F}_t -meßbar sein. Sinnvolle Forderung: Preisprozeß X adaptiert zu \mathfrak{F} , d.h. $\mathfrak{F}_t^X \subset \mathfrak{F}_t$ für alle $t \in I$.

Kontinuierliches Finanzmarktmodell für d Finanzgüter mit Zeithorizont $t_0 > 0$: Filtration $\mathfrak{F} = (\mathfrak{F}_t)_{t \in I}$ und dazu adaptierter \mathbb{R}^d -wertiger Prozeß $X = (X_t)_{t \in I}$, wobei $I = [0, t_0]$.

Handelsstrategie $H = (H_t)_{t \in I}$ in obigem Modell: \mathbb{R}^d -wertiger stochastischer Prozeß auf demselben Wahrscheinlichkeitsraum. Für $j \in \{1, \ldots, d\}$: $H_{t,j}$ Bestand an Finanzgut j zur Zeit $t \in I$. Sinnvolle Forderung: H zu \mathfrak{F} adaptiert.

Im folgenden sei $I = [0, \infty[$. Gegeben: Filtration $\mathfrak{F} = (\mathfrak{F}_t)_{t \in I}$ in \mathfrak{A} .

Definition 4. \mathfrak{F} rechtsseitig stetig, falls

$$\forall t \in I: \quad \mathfrak{F}_t = \bigcap_{\varepsilon > 0} \mathfrak{F}_{t+\varepsilon}.$$

Definition 5.

(i) X meßbar, falls

$$I \times \Omega \to S$$
, $(t, \omega) \mapsto X_t(\omega)$

 $(\mathfrak{B}(I)\otimes\mathfrak{A})$ -S-meßbar ist.

(ii) X progressiv meßbar (bzgl. \mathfrak{F}), falls für jedes $t \geq 0$ die Abbildung

$$[0,t] \times \Omega \to S$$
, $(s,\omega) \mapsto X_s(\omega)$

 $(\mathfrak{B}([0,t])\otimes\mathfrak{F}_t)$ -S-meßbar ist.

Bemerkung 4. Klar: progressiv meßbar \Rightarrow meßbar und adaptiert⁷.

 $^{^5}$ Analog mit anderen Pfadräumen, etwa $\Omega_2=C([0,t])$ und $\mathfrak{A}_2=\mathfrak{B}(\Omega_2)$. Siehe Prop. II.4.

⁶Notation $\mathfrak{S}^{[0,t]} = \bigotimes_{s \in [0,t]} \mathfrak{S}$.

 $^{^{7}}$ Ferner: meßbar und adaptiert ⇒ Existenz einer progressiv meßbaren Modifikation, siehe Karatzas, Shreve (1999, p. 5).

Kurz: X stetig, falls alle Pfade von X stetig sind. Analog für rechtsseitige und linksseitige Stetigkeit.

Proposition 2.

X adaptiert und rechtsseitig (linksseitig) stetig \Rightarrow X progressiv meßbar.

Beweis. Im Falle rechtsseitiger Stetigkeit. Fixiere t > 0, setze $I_0^{(n)} = \{0\}$ und $I_k^{(n)} = [(k-1)/2^n \cdot t, k/2^n \cdot t]$ für $n \in \mathbb{N}$ und $k = 1, \ldots, 2^n$. Definiere

$$X_s^{(n)}(\omega) = X_{k/2^n \cdot t}(\omega), \quad \text{falls } s \in I_k^{(n)}.$$

Dann folgt für alle $\omega \in \Omega$ und $s \in [0, t]$

$$\lim_{n \to \infty} X_s^{(n)}(\omega) = X_s(\omega).$$

Ferner gilt für $B \in \mathfrak{S}$

$$\begin{split} \{(s,\omega) \in [0,t] \times \Omega : X_s^{(n)}(\omega) \in B\} &= \bigcup_{k=0}^{2^n} \{(s,\omega) \in I_k^{(n)} \times \Omega : X_{k/2^n \cdot t}(\omega) \in B\} \\ &= \bigcup_{k=0}^{2^n} \left(I_k^{(n)} \times \{X_{k/2^n \cdot t} \in B\} \right) \in \mathfrak{B}([0,t]) \otimes \mathfrak{F}_t. \end{split}$$

Definition 6. X cadlag⁸ Prozeß, falls jeder Pfad in jedem Punkt $t \geq 0$ rechtsseitig stetig ist und in jedem Punkt t > 0 einen linksseitigen Grenzwert besitzt.

1.2 Stoppzeiten

Gegeben: Prozeß $X=(X_t)_{t\in I}$ auf Wahrscheinlichkeitsraum (Ω,\mathfrak{A},P) mit Filtration $\mathfrak{F}=(\mathfrak{F}_t)_{t\in I}$. Betrachte Abbildungen $T:\Omega\to I\cup\{\infty\}$.

Definition 7.

(i) T Stoppzeit (bzgl. \mathfrak{F}), falls

$$\forall t \in I : \{T < t\} \in \mathfrak{F}_t.$$

(ii) T optionale Zeit (bzgl. \mathfrak{F}), falls

$$\forall t \in I : \{T < t\} \in \mathfrak{F}_t.$$

Im folgenden sei $I = [0, \infty[$.

⁸Continu à droite, limites à gauche.

Bemerkung 5. Betrachte die kanonische Filtration \mathfrak{F}^X . Genau dann ist T Stoppzeit bzgl. \mathfrak{F}^X , wenn für jedes $t \in I$ eine Menge $B \in \mathfrak{S}^{[0,t]}$ mit

$$\{T \le t\} = \{\omega \in \Omega : X_{\cdot}(\omega)|_{[0,t]} \in B\}$$

existiert, siehe Bemerkung 3.

Beispiel 4. T Verkaufsstrategie für eine Aktie oder Ausübungsstrategie für amerikanische Option. Letztere gibt dem Inhaber der Option das Recht, innerhalb eines Zeitraumes $[0, t_0]$ ein Basisgut (etwa eine Aktie) zu einem festgelegten Basispreis zu kaufen (Call) bzw. zu verkaufen (Put). Sinnvolle Forderung: T Stoppzeit.

Proposition 3.

T Stoppzeit \Rightarrow T optionale Zeit.

Hier gilt "⇔" im Falle einer rechtsseitig stetigen Filtration.

Beweis. $,\Rightarrow$ "

$$\{T < t\} = \bigcup_{n=1}^{\infty} \underbrace{\{T \le t - 1/n\}}_{\in \mathfrak{F}_{t-1/n}} \in \mathfrak{F}_t.$$

" \Leftarrow " Für jedes $m \in \mathbb{N}$

$$\{T \le t\} = \bigcap_{n=m}^{\infty} \underbrace{\{T < t+1/n\}}_{\in \mathfrak{F}_{t+1/n}} \in \mathfrak{F}_{t+1/m}.$$

Mit der Stetigkeitsannahme folgt $\{T \leq t\} \in \mathfrak{F}_t$.

Proposition 4. Mit S, T, T_1, \ldots sind auch S+T und $\sup_{n\in\mathbb{N}} T_n$ Stoppzeiten bzgl. \mathfrak{F} . Im Falle einer rechtsseitig stetigen Filtration gilt dies auch für $\inf_{n\in\mathbb{N}} T_n$.

Beweis. Für die Summe. Es gilt

$$\{S+T>t\}$$

$$= \underbrace{\{S=0,T>t\}}_{\in \mathfrak{F}_t} \cup \{0 < S < t, S+T>t\} \cup \underbrace{\{S=t,T>0\}}_{\in \mathfrak{F}_t} \cup \underbrace{\{S>t\}}_{\in \mathfrak{F}_t}$$

sowie

$$\{0 < S < t, S + T > t\} = \bigcup_{r \in \mathbb{Q} \cap]0, t[} \underbrace{\{r < S < t, T > t - r\}}_{\in \mathfrak{F}_t} \in \mathfrak{F}_t.$$

Definition 8. Eintrittszeit in $\Gamma \in \mathfrak{B}(\mathbb{R}^d)$:

$$H_{\Gamma}(\omega) = \inf\{t \in I : X_t(\omega) \in \Gamma\}.$$

Beispiel 5. Verkaufe Aktie, sobald erstmals der Preis a erreicht oder überschritten ist, also $\Gamma = [a, \infty[$ im Falle d = 1.

⁹Wie üblich: $\inf \emptyset = \infty$.

Proposition 5. Sei X zu \mathfrak{F} adaptiert. Dann

- (i) X rechtsseitig stetig \wedge Γ offen \Rightarrow H_{Γ} optionale Zeit.
- (ii) X stetig \wedge Γ abgeschlossen \Rightarrow H_{Γ} Stoppzeit.

Beweis. ad (i): Es gilt

$$\{H_{\Gamma} < t\} = \bigcup_{s \in [0,t[} \{X_s \in \Gamma\} = \bigcup_{s \in \mathbb{Q} \cap [0,t[} \underbrace{\{X_s \in \Gamma\}}_{\in \mathfrak{F}_s} \in \mathfrak{F}_t.$$

ad (ii): Übung 1.4.b).

Gegeben: Stoppzeit T.

Definition 9. σ -Algebra der T-Vergangenheit:

$$\mathfrak{F}_T = \{ A \in \mathfrak{A} : \forall \ t \in I : A \cap \{ T \le t \} \in \mathfrak{F}_t \}.$$

Bemerkung 6. Klar: \mathfrak{F}_T ist σ -Algebra und T ist \mathfrak{F}_T - $\mathfrak{B}(I \cup \{\infty\})$ -meßbar.

Betrachte den Prozeß X zur Stoppzeit T,

$$X_T: \{T < \infty\} \to S, \qquad X_T(\omega) := X_{T(\omega)}(\omega),$$

und den gestoppten Prozeß¹⁰

$$(X_{T\wedge t})_{t\in I}$$
.

Proposition 6. Sei X progressiv meßbar. Dann

- (i) X_T ist \mathfrak{F}_T - \mathfrak{S} -meßbar.
- (ii) $(X_{T \wedge t})_{t \in I}$ ist progressiv meßbar.

Beweis. ad (ii): Fixiere t > 0, setze $\mathfrak{B} = \mathfrak{B}([0,t])$. Die Abbildung

$$[0,t] \times \Omega \to [0,t] \times \Omega, \quad (s,\omega) \mapsto (T(\omega) \wedge s,\omega)$$

ist $\mathfrak{B} \otimes \mathfrak{F}_t$ - $\mathfrak{B} \otimes \mathfrak{F}_t$ -meßbar¹¹. Die Abbildung

$$[0,t] \times \Omega \to S, \quad (z,\omega) \mapsto X_z(\omega)$$

ist n.V. $\mathfrak{B}\otimes\mathfrak{F}_t$ - \mathfrak{S} -meßbar. Betrachte die Komposition.

ad (i): Es gilt

$$\{X_T \in B\} \cap \{T \le t\} = \underbrace{\{X_{T \land t} \in B\}}_{\in \mathfrak{F}_t \text{ wg. (ii)}} \cap \underbrace{\{T \le t\}}_{\in \mathfrak{F}_t} \in \mathfrak{F}_t$$

für
$$B \in \mathfrak{S}$$
.

 $^{^{10}\}mathrm{Notation}\,\wedge$ für min.

 $^{^{11}\{}T \land s \le u\} = [0, t] \times \{T \le u\} \cup [0, u] \times \Omega.$

2 Der Poisson-Prozeß

Betrachte Folge $(T_i)_{i\in\mathbb{N}}$ von iid. Zufallsvariablen auf $(\Omega, \mathfrak{A}, P)$, jeweils exponentialverteilt¹² mit Parameter $\lambda > 0$. Setze $S_0 = 0$ und $S_n = \sum_{i=1}^n T_i$ für $n \in \mathbb{N}$. Definiere

$$N_t = \max\{n \in \mathbb{N}_0 : S_n \le t\}.$$

Klar: $P(\bigcup_{i=1}^{\infty} \{T_i \leq 0\}) = 0$ und¹³ $P(\{\sup_{n \in \mathbb{N}} S_n < \infty\}) = 0$. OBdA: die komplementären Eigenschaften gelten auf ganz Ω .

Im folgenden $I = [0, \infty[$.

Definition 10. $X = (X_t)_{t \in I}$ Poisson-Proze β mit Intensität $\lambda > 0$ bzgl. Filtration $\mathfrak{F} = (\mathfrak{F}_t)_{t \in I}$, falls¹⁴

- (i) X cadlag Prozeß mit Werten in \mathbb{N}_0 ,
- (ii) X adaptiert an \mathfrak{F} ,
- (iii) $X_0 = 0$,
- (iv) für $0 \le s < t$ ist $X_t X_s$
 - (a) unabhängig von \mathfrak{F}_s ,
 - (b) Poisson-verteilt¹⁵ mit Parameter $\lambda(t-s)$.

Satz 1. $(N_t)_{t\in I}$ ist Poisson-Prozeß mit Intensität λ bzgl. $(\mathfrak{F}_t^N)_{t\in I}$.

Klar: es gilt (i)-(iii). Der Beweis von (iv) ergibt sich mit dem folgenden Lemma 2.

Lemma 1. Für $0 \le s < t$ gilt

$$P(\{S_{N_s+1} > t\} \mid \mathfrak{F}_s^N) = \exp(-\lambda(t-s)).$$

Beweis. Sei $A\in \mathfrak{F}^N_s$ und t>s. Zu zeigen:

$$P(\{S_{N_s+1} > t\} \cap A) = \exp(-\lambda(t-s)) \cdot P(A).$$

Für $n \in \mathbb{N}_0$ existiert $B \in \sigma(\{T_1, \dots, T_n\})$ mit

$$A \cap \{N_s = n\} = B \cap \{N_s = n\},$$

 $^{^{12}}$ Für $t \geq 0$: $P(\{T_i \leq t\}) = 1 - \exp(-\lambda t)$; charakterisierende Eigenschaft (Gedächtnislosigkeit): $P(\{T_i \geq t\} \mid \{T_i \geq s\}) = P(\{T_i \geq t - s\})$ für $0 \leq s < t$.

¹³Starkes Gesetz der großen Zahlen: $S_n/n \to 1/\lambda$ P-f.s.

 $^{^{14}}$ Im folgenden oft kurz X = Y oder $X \ge Y$, falls diese Eigenschaften f.s. gelten. Ebenso identifizieren wir Abbildungen, die f.s. übereinstimmen.

¹⁵Für $k \in \mathbb{N}_0$: $P(\{X_t - X_s = k\}) = (\lambda(t - s))^k / k! \cdot \exp(-\lambda(t - s))$.

siehe Bemerkung 3. Klar: T_{n+1} und $(S_n, 1_B)$ unabhängig. Somit

$$P(\{S_{n+1} > t\} \cap A \cap \{N_s = n\}) = P(\{T_{n+1} + S_n > t\} \cap B \cap \{S_n \le s\})$$

$$= \int_{t-s}^{\infty} P(\{S_n > t - u\} \cap B \cap \{S_n \le s\}) \cdot \lambda \exp(-\lambda u) du$$

$$= \exp(-\lambda (t - s)) \cdot \int_{0}^{\infty} P(\{S_n > s - u\} \cap B \cap \{S_n \le s\}) \cdot \lambda \exp(-\lambda u) du$$

$$= \exp(-\lambda (t - s)) \cdot P(\{S_{n+1} > s\} \cap \{S_n \le s\} \cap B)$$

$$= \exp(-\lambda (t - s)) \cdot P(A \cap \{N_s = n\}).$$

Jetzt Summation über $n \in \mathbb{N}_0$.

Lemma 2. Für $0 \le s < t, A \in \mathfrak{F}_s^N$ und $k \in \mathbb{N}_0$ gilt

$$P(A \cap \{N_t - N_s = k\}) = P(A) \cdot \frac{(\lambda(t-s))^k}{k!} \exp(-\lambda(t-s)).$$

Beweis. Sei $k \in \mathbb{N}$ und $n \in \mathbb{N}_0$. Bezeichne mit φ_k die Dichte von

$$Y_k = \sum_{\ell=n+2}^{n+k+1} T_\ell.$$

Wie oben ergibt sich

$$z := P(A \cap \{N_t - N_s \le k\} \cap \{N_s = n\}) = P(B \cap \{S_{n+k+1} > t\} \cap \{N_s = n\})$$

$$= P(B \cap \{N_s = n\} \cap \{S_{n+1} + Y_k > t\})$$

$$= \int_0^\infty \underbrace{P(B \cap \{N_s = n\} \cap \{S_{n+1} + u > t\})}_{=:h(u)} \cdot \varphi_k(u) du.$$

Weiter

$$\int_{t-s}^{\infty} h(u) \cdot \varphi_k(u) \, du = P(B \cap \{N_s = n\}) \cdot P(\{Y_k \ge t - s\}),$$

und der Beweis von Lemma 1 zeigt

$$\int_0^{t-s} h(u) \cdot \varphi_k(u) \, du = \int_0^{t-s} P(B \cap \{N_s = n\}) \cdot \exp(-\lambda(t - u - s)) \cdot \varphi_k(u) \, du.$$

Verwende¹⁶

$$\varphi_k(u) = \frac{\lambda^k u^{k-1}}{(k-1)!} \cdot \exp(-\lambda u)$$

und

$$P(\lbrace Y_k > u \rbrace) = \sum_{j=0}^{k-1} \frac{(\lambda u)^j}{j!} \cdot \exp(-\lambda u)$$

zum Nachweis von

$$z = P(A \cap \{N_s = n\}) \cdot \sum_{i=0}^{k} \frac{(\lambda(t-s))^j}{j!} \exp(-\lambda(t-s)).$$

Jetzt Summation über $n \in \mathbb{N}$ etc.

 $^{^{16}}Y_k$ ist Gamma-verteilt mit Parameter (λ, k) .

Proposition 7. Die kanonische Filtration $(\mathfrak{F}_t^N)_{t\in I}$ ist rechtsseitig stetig.

Beweis. Wesentlich: die Pfade von N sind lokal rechtsseitig konstant. Siehe Protter (1990, p. 16) für allgemeines Ergebnis für Zählprozesse.

Obige Konstruktion des Poisson-Prozesses ist universell. Es gibt verteilungsfreie Charakterisierungen des Poisson-Prozesses. Siehe Gänssler, Stute (1977, Kap. VII.5).

Anwendungen des Poisson-Prozesses: z. Bsp. Warteschlangentheorie, Finanzmathematik, Versicherungsmathematik. Ausblick: Punktprozesse in \mathbb{R}^d .

3 Martingale

Gegeben: Filtration $\mathfrak{F} = (\mathfrak{F}_t)_{t \in I}$ und adaptierter reellwertiger Prozeß $X = (X_t)_{t \in I}$ auf $(\Omega, \mathfrak{A}, P)$ mit

$$\forall t \in I : E(|X_t|) < \infty.$$

Kurzschreibweise: $(X_t, \mathfrak{F}_t)_{t \in I}$, falls X an \mathfrak{F} adaptiert.

Definition 11. $(X_t, \mathfrak{F}_t)_{t \in I}$ Submartingal, falls

$$\forall s, t \in I : \quad s < t \implies X_s \le E(X_t \mid \mathfrak{F}_s).$$

Supermartingal: $,\geq$ ", Martingal ,=".

Beispiel 6. Für einen Poisson-Prozeß $(X_t, \mathfrak{F}_t)_{t \in I}$ mit Intensität $\lambda > 0$ und $0 \le s < t$ gilt

$$E(X_t \mid \mathfrak{F}_s) = E(X_t - X_s \mid \mathfrak{F}_s) + E(X_s \mid \mathfrak{F}_s) = E(X_t - X_s) + X_s = \lambda(t - s) + X_s.$$

Also liegt ein Submartingal vor.

Definiere einen kompensierten Poisson-Prozeß durch

$$M_t = X_t - \lambda t$$
.

Dann ist $(M_t, \mathfrak{F}_t)_{t \in I}$ ein Martingal.

Die Martingaltheorie im kontinuierlichen Fall $I = [0, \infty[$ wird oft unter Rückgriff auf den vorab betrachteten diskreten Fall entwickelt. Wir diskutieren einige Elemente dieser Theorie.

3.1 Martingale in diskreter Zeit

Zunächst sei $I = \mathbb{N}_0$.

Beispiel 7. Cox-Ross-Rubinstein Modell: einfaches Modell für Aktienkurs zu Zeiten $t \in \mathbb{N}_0$. Wähle

$$A_0 > 0$$
, $0 , $0 < d < u$,$

und betrachte $(Y_t)_{t\in\mathbb{N}}$ iid. mit

$$P({Y_t = u}) = p = 1 - P({Y_t = d}).$$

Definiere $\mathfrak{F}_0 = \{\emptyset, \Omega\}$ und

$$A_t = A_0 \cdot \prod_{s=1}^t Y_s, \qquad \mathfrak{F}_t = \sigma(\{Y_1, \dots, Y_t\})$$

für $t \in \mathbb{N}$. Klar: $\mathfrak{F} = \mathfrak{F}^A$. Für ganzzahlige $0 \leq s < t$

$$E(A_t \mid \mathfrak{F}_s) = A_s \cdot E\left(\prod_{k=s+1}^t Y_k\right) = A_s \cdot E(Y_1)^{t-s} = (pu + (1-p)d)^{t-s} \cdot A_s.$$

Also

$$(A_t, \mathfrak{F}_t)_{t \in \mathbb{N}_0}$$
 Submartingal \Leftrightarrow $E(Y_1) \geq 1$

und

$$(A_t, \mathfrak{F}_t)_{t \in \mathbb{N}_0}$$
 Martingal \Leftrightarrow $d < 1 < u \land p = \frac{1-d}{u-d}$.

Wir sehen später: ein geeigneter Grenzübergang liefert die geometrische Brownsche Bewegung; auf diesem stochastischen Finanzmarktmodell basiert die Black-Scholes-Formel zur Bewertung europäischer Optionen.

Frage: Gibt es im Martingal-Fall eine Stoppzeit (Verkaufsstrategie) T mit $E(A_T) > A_0$?

Die folgenden Sätze 2, 3 und 5 sind Varianten des *optional sampling theorems*. Beweise der Sätze 2 und 3 findet man im Skript "Probability Theory".

Satz 2.

$$(X_t, \mathfrak{F}_t)_{t \in \mathbb{N}_0}$$
 Martingal \Leftrightarrow $\forall T$ beschränkte Stoppzeit : $E(X_T) = E(X_0)$.

Satz 3. Sei $(X_t, \mathfrak{F}_t)_{t \in \mathbb{N}_0}$ Martingal und T Stoppzeit mit

$$P(\{T < \infty\}) = 1 \land E(|X_T|) < \infty \land \lim_{t \to \infty} \int_{\{T > t\}} |X_t| dP = 0.$$

Dann

$$E(X_T) = E(X_0).$$

Die Struktur der Submartingale ergibt sich wie folgt.

Satz 4 (Doobsche Zerlegung). Für

$$M_t = \sum_{s=1}^t (X_s - E(X_s \mid \mathfrak{F}_{s-1})) + X_0, \qquad A_t = \sum_{s=1}^t (E(X_s \mid \mathfrak{F}_{s-1}) - X_{s-1})$$

gilt

- (i) $X_t = M_t + A_t$,
- (ii) $(M_t, \mathfrak{F}_t)_{t \in \mathbb{N}_0}$ ist Martingal,
- (iii) $(X_t, \mathfrak{F}_t)_{t \in \mathbb{N}_0}$ Submartingal \Leftrightarrow $(A_t)_{t \in \mathbb{N}_0}$ P-f.s monoton wachsend.

Beweis. Nachrechnen. \Box

Satz 5. Sei $(X_t, \mathfrak{F}_t)_{t \in \mathbb{N}_0}$ Submartingal. Für beschränkte Stoppzeiten $S \leq T$ gilt¹⁷

$$X_S \leq E(X_T \mid \mathfrak{F}_S)$$

und somit

$$E(X_S) \leq E(X_T)$$
.

Im Martingal-Fall gilt jeweils "=".

Beweis. Zunächst der Submartingalfall. Für Zufallsvariablen X,Y auf (Ω,\mathfrak{A},P) mit $E(|X|),\,E(|Y|)<\infty$ gilt

$$X \le Y$$
 \Leftrightarrow $\forall A \in \mathfrak{A} : \int_A X \, dP \le \int_A Y \, dP.$

Ferner: X_S und $E(X_T | \mathfrak{F}_S)$ sind \mathfrak{F}_S -meßbar. Also ist zu zeigen

$$\forall A \in \mathfrak{F}_S: \int_A X_S dP \leq \underbrace{\int_A E(X_T \mid \mathfrak{F}_S) dP}_{=\int_A X_T dP}.$$

Verwende die Doobsche Zerlegung X = M + A. Wg. der Monotonie von A

$$A_S < A_T$$
.

Sei $A \in \mathfrak{F}_S$. Wir zeigen

$$\int_A M_S \, dP = \int_A M_T \, dP.$$

Setze

$$R = S \cdot 1_A + T \cdot 1_{\Omega \setminus A}.$$

Da $\Omega \setminus A \in \mathfrak{F}_S \subset \mathfrak{F}_T$, folgt

$$\{R \le t\} = \underbrace{\{S \le t\} \cap A}_{\in \mathfrak{F}_t} \cup \underbrace{\{T \le t\} \cap (\Omega \setminus A)}_{\in \mathfrak{F}_t} \in \mathfrak{F}_t,$$

so daß R eine beschränkte Stoppzeit ist. Satz 2 liefert

$$E(M_R) = E(M_0) = E(M_T).$$

Klar

$$E(M_R) = E(M_S \cdot 1_A) + E(M_T \cdot 1_{\Omega \setminus A}).$$

Im Martingalfall betrachte man X und -X.

 $^{^{17}}$ Beachte, daß X_S \mathfrak{F}_S -meßbar ist. Vgl. Proposition 6 im kontinuierlichen Fall.

Gegeben: $(X_t, \mathfrak{F}_t)_{t \in I}$ mit $I = \{t_0, \ldots, t_n\}$ für $t_0 < \cdots < t_n$ sowie a < b. Definiere Stoppzeiten

$$\begin{split} T_1 &= \inf\{t \in I : X_t \leq a\}, \\ T_2 &= \inf\{t \in I : X_t \geq b, \ t > T_1\}, \\ &\vdots \\ T_{2k+1} &= \inf\{t \in I : X_t \leq a, \ t > T_{2k}\}, \\ T_{2k+2} &= \inf\{t \in I : X_t \geq b, \ t > T_{2k+1}\}, \\ &\vdots \\ \end{split}$$

sowie die Anzahl der $\ddot{U}berquerungen~(Upcrossings)$ des Intervalls [a,b] von unten nach oben

$$U_I^X(a,b) = \begin{cases} 0, & \text{falls } T_2 = \infty, \\ \max\{k \in \mathbb{N} : T_{2k} \le t_n\}, & \text{sonst.} \end{cases}$$

Satz 6 (Upcrossing-Inequality). Für jedes Submartingal $(X_t, \mathfrak{F}_t)_{t \in I}$ gilt

$$E(U_I^X(a,b)) \le \frac{E((X_{t_n}-a)^+) - E((X_{t_0}-a)^+)}{b-a}.$$

Beweis. O.B.d.A. a=0 und $X\geq 0$ aufgrund der Jensenschen Ungleichung. Definiere Stoppzeiten $S_0=t_0$ und $S_i=T_i\wedge t_n$ für $i\in\mathbb{N}$. Dann

$$X_{t_n} - X_{t_0} = \sum_{j=1}^{\infty} (X_{S_{2j}} - X_{S_{2j-1}}) + \sum_{j=0}^{\infty} (X_{S_{2j+1}} - X_{S_{2j}})$$

sowie

$$\sum_{j=1}^{\infty} (X_{S_{2j}} - X_{S_{2j-1}}) \ge b \cdot U_I^X(0, b).$$

Satz 5 sichert

$$E(X_{S_{2j+1}}) \ge E(X_{S_{2j}}).$$

Fazit

$$E(X_{t_n}) - E(X_{t_0}) \ge b \cdot E(U_I^X(0, b)).$$

Satz 7 (Submartingal-Ungleichungen). Für jedes Submartingal $(X_t, \mathfrak{F}_t)_{t \in I}$ und $\mu > 0$ gilt

$$P(\{\max_{i=0,\dots,n} X_{t_i} \ge \mu\}) \le 1/\mu \cdot E(X_{t_n}^+),$$

$$P(\{\min_{i=0,\dots,n} X_{t_i} \le -\mu\}) \le 1/\mu \cdot (E(X_{t_n}^+) - E(X_{t_0})).$$

Beweis. Siehe Chung (1974, Theorem 9.4.1).

Schließlich noch zwei Martingalkonvergenzsätze mit $I = -\mathbb{N}$ bzw. $I = \mathbb{Z}$.

Proposition 8. Gegeben: Submartingal¹⁸ $(X_t, \mathfrak{F}_t)_{t \in \mathbb{N}}$ mit

$$\inf_{t \in -\mathbb{N}} E(X_t) > -\infty. \tag{1}$$

Dann existiert $X_{-\infty} \in L_1(\Omega, \mathfrak{A}, P)$, so daß

$$\lim_{t \to -\infty} X_t = X_{-\infty} \qquad P\text{-f.s. und in } L_1.$$

Beweis. Ohne Verwendung von (1) sichert Satz 6 die Existenz einer Zufallsvariablen $X_{-\infty}$ mit Werten in $\mathbb{R} \cup \{\pm \infty\}$, so daß $\lim_{t \to -\infty} X_t = X_{-\infty}$ P-f.s., vgl. Übung 3.3. Mit (1) und Satz 7 zeigt man, daß $X_{-\infty}$ P-f.s. endlich ist, und die gleichgradige Integrierbarkeit von $(X_t)_{t \in -\mathbb{N}}$, siehe Chung (1974, Theorem 9.4.7).

Proposition 9. Gegeben: Filtration $(\mathfrak{F}_t)_{t\in\mathbb{Z}}$ und Zufallsvariable Y auf (Ω,\mathfrak{A},P) mit $E(|Y|) < \infty$. In $L_1(\Omega,\mathfrak{A},P)$ und P-f.s. gilt

$$\lim_{t \to \infty} E(Y \mid \mathfrak{F}_t) = E\left(Y \mid \sigma\left(\bigcup_{t \in \mathbb{Z}} \mathfrak{F}_t\right)\right), \qquad \lim_{t \to -\infty} E(Y \mid \mathfrak{F}_t) = E\left(Y \mid \bigcap_{t \in \mathbb{Z}} \mathfrak{F}_t\right).$$

Beweis. Siehe Chung (1974, Thm. 9.4.8).

3.2 Martingale in stetiger Zeit

Im folgenden sei $I = [0, \infty[$.

Satz 8 (Optional Sampling Theorem). Für jedes rechtsseitig stetige Martingal $(X_t, \mathfrak{F}_t)_{t \in I}$ gilt

$$\forall T \text{ beschränkte Stoppzeit}: E(X_T) = E(X_0).$$

Beweis. Gelte $T(\omega) \leq N$ für alle $\omega \in \Omega$. Für $n \in \mathbb{N}$ sei T_n definiert durch

$$T_n(\omega) = k/2^n \quad \Leftrightarrow \quad T(\omega) \in [(k-1)/2^n, k/2^n].$$

Für $t \in [(k-1)/2^n, k/2^n]$ zeigt Proposition 3

$$\{T_n \le t\} = \{T_n \le (k-1)/2^n\} = \{T < (k-1)/2^n\} \in \mathfrak{F}_{(k-1)/2^n} \subset \mathfrak{F}_t,$$

d.h. T_n ist Stoppzeit.

Für alle $\omega \in \Omega$:

$$T_n(\omega) \leq N+1 \quad \wedge \quad \lim_{n \to \infty} T_n(\omega) \searrow T(\omega).$$

Somit wegen der rechtsseitigen Stetigkeit:

$$\lim_{n \to \infty} X_{T_n}(\omega) = X_T(\omega). \tag{2}$$

Satz 5 zeigt

$$E(X_{N+1} \mid \mathfrak{F}_{T_n}) = X_{T_n}.$$

¹⁸Sogenanntes inverses Submartingal.

Also ist $\{X_{T_n}: n \in \mathbb{N}\}$ gleichgradig integrierbar, siehe Übung 3.1. Mit (2) folgt

$$\lim_{n\to\infty} E(X_{T_n}) = E(X_T).$$

Schließlich zeigt Satz 2

$$\forall n \in \mathbb{N} : E(X_{T_n}) = E(X_0).$$

Die folgenden Begriffe und Ergebnisse sind grundlegend bei der Einführung des stochastischen Integrals.

Definition 12. \mathfrak{F} erfüllt die *üblichen Voraussetzungen*, falls

- (i) \mathfrak{F} rechtsseitig stetig,
- (ii) $\{A \subset \Omega : \exists B \in \mathfrak{A} : A \subset B \land P(B) = 0\} \subset \mathfrak{F}_0$.

Satz 9. Erfüllt seien

- (i) $(X_t, \mathfrak{F}_t)_{t \in I}$ Submartingal,
- (ii) $t \mapsto E(X_t)$ rechtsseitig stetig,
- (iii) die üblichen Voraussetzungen.

Dann existiert eine cadlag Modifikation Y von X, so daß $(Y_t, \mathfrak{F}_t)_{t \in I}$ ein Submartingal ist.

Beweis. Satz 7 sichert die Existenz von $B \in \mathfrak{A}$ mit P(B) = 1 und

$$\forall \ \omega \in B \ \forall \ n \in \mathbb{N} : \sup_{t \in [0,n] \cap \mathbb{Q}} |X_t(\omega)| < \infty.$$

Details bei Yeh (1995, Prop. 9.1.1). Definiere

$$U_n^X(a,b) = \sup\{U_J^X(a,b): J \subset [0,n] \cap \mathbb{Q} \text{ endlich}\}$$

sowie

$$C_n(a,b) = \{U_n^X(a,b) < \infty\},$$
 $C = \bigcap_{n \in \mathbb{N}} \bigcap_{a < b, a,b \in \mathbb{Q}} C_n(a,b).$

Nach Satz 6 und dem Satz von der monotonen Konvergenz gilt P(C) = 1. Für $\omega \in B \cap C$ existieren die Grenzwerte

$$X_t^{\mathrm{r}}(\omega) = \lim_{s \searrow t, s \in \mathbb{Q}} X_s(\omega),$$

für jedes $t \geq 0$. Setze $Y_t(\omega) = X^r(t)(\omega)$ für $\omega \in B \cap C$ und andernfalls $Y_t(\omega) = 0$. Man verifiziert, daß Y ein cadlag Prozeß ist. Die üblichen Voraussetzungen sichern, daß Y zu \mathfrak{F} adaptiert ist.

Sei $s \in I$. Wähle $s_n \in \mathbb{Q}$ mit $s_n \setminus s$. Für $A \in \mathfrak{F}_s$

$$\int_{A} X_{s} dP \le \int_{A} E(X_{s_{n}} \mid \mathfrak{F}_{s}) dP = \int_{A} X_{s_{n}} dP.$$

Die $L_1\text{-}Konvergenz$ gem. Proposition 8 liefert $E(|Y_s|)<\infty$ und

$$\lim_{n \to \infty} \int_A X_{s_n} dP = \int_A Y_s dP, \tag{3}$$

so daß

$$X_s \le Y_s. \tag{4}$$

Gelte $s_n < t$. Gem. (4) folgt

$$E(Y_t \mid \mathfrak{F}_{s_n}) \ge E(X_t \mid \mathfrak{F}_{s_n}) \ge X_{s_n}.$$

Zusammen mit Proposition 9 und der rechtsseitigen Stetigkeit von \mathfrak{F} ergibt sich

$$E(Y_t \mid \mathfrak{F}_s) = \lim_{n \to \infty} E(Y_t \mid \mathfrak{F}_{s_n}) \ge \lim_{n \to \infty} X_{s_n} = Y_s,$$

d.h. $(Y_t, \mathfrak{F}_t)_{t \in I}$ ist ein Submartingal.

Die rechtsseitige Stetigkeit von $s \mapsto E(X_s)$ und (3) liefern

$$E(X_s) = E(Y_s),$$

Mit (4) ergibt sich $Y_s = X_s$.

Definition 13. $(A_t, \mathfrak{F}_t)_{t \in I}$ wachsend, falls

- (i) $A_0 = 0$,
- (ii) A besitzt rechtsseitig stetige, monoton wachsende¹⁹ Pfade,
- (iii) $\forall t \in I : E(A_t) < \infty$.

Bemerkung 7. Wir integrieren erstmals bezüglich eines stochastischen Prozesses. Sei $(A_t, \mathfrak{F}_t)_{t\in I}$ wachsend und $(X_t)_{t\in I}$ meßbar. Dann sind die Lebesgue-Stieltjes Integrale²⁰

$$I_t^{\pm}(\omega) = \int_0^t X_s^{\pm}(\omega) \, dA_s(\omega), \qquad \omega \in \Omega,$$

für $t \in I$ wohldefiniert. Sei $(X_t, \mathfrak{F}_t)_{t \in I}$ progressiv meßbar und gelte

$$\forall \ \omega \in \Omega : I_t^{\pm}(\omega) < \infty.$$

Dann ist

$$I_t(\omega) = I_t^+(\omega) - I_t^-(\omega), \qquad \omega \in \Omega,$$

für $t \in I$ wohldefiniert, rechtsseitig stetig und progressiv meßbar.

 $^{^{19}}A_s(\omega) \leq A_t(\omega)$, falls $s \leq t$.

²⁰Identifiziere $A.(\omega)$ mit dem durch $\mu^{\omega}([0,s]) = A_s(\omega)$ definierten σ -endlichen Maß auf $\mathfrak{B}(I)$.

Beispiel 8. Der Poisson-Prozeß $(N_t, \mathfrak{F}_t^N)_{t \in I}$ ist wachsend. Setze

$$J_t(\omega) = \{S_n(\omega) : n \in \mathbb{N}\} \cap [0, t].$$

Dann gilt $\#J_t(\omega) = N_t(\omega) < \infty$ und

$$I_t(\omega) = \sum_{s \in J_t(\omega)} X_s(\omega).$$

Wir formulieren nun ein kontinuierliches Analogon der Doobschen Zerlegung.

Die Summe eines Martingals M und eines wachsenden Prozesses A (bzgl. derselben Filtration) ist ein Submartingal. Ist jedes Submartingal so darstellbar? Ist diese Darstellung eindeutig?

Beispiel 9. Sei $(X_t, \mathfrak{F}_t)_{t \in I}$ Poisson-Prozeß mit Intensität $\lambda > 0$. Dann

$$X_t = \underbrace{X_t - \lambda t}_{=M_t} + \underbrace{\lambda t}_{=A_t}.$$

Wir wissen: $(M_t, \mathfrak{F}_t)_{t \in I}$ ist ein Martingal. Klar: $(A_t, \mathfrak{F}_t)_{t \in I}$ ist wachsend.

Satz 10 (Doob-Meyer-Zerlegung). Erfüllt seien²¹

- (i) $(X_t, \mathfrak{F}_t)_{t \in I}$ stetiges Submartingal,
- (ii) $\forall t \in I : X_t \geq 0$,
- (iii) die üblichen Voraussetzungen.

Dann existiert ein stetiges Martingal $(M_t, \mathfrak{F}_t)_{t \in I}$ und ein stetiger wachsender Prozeß $(A_t, \mathfrak{F}_t)_{t \in I}$ mit

$$\forall t \in I \ \forall \ \omega \in \Omega : \ X_t(\omega) = M_t(\omega) + A_t(\omega).$$

Diese Zerlegung ist eindeutig bis auf Ununterscheidbarkeit.

Beweisskizze. Details bei Karatzas Shreve (1999, Chap. 1.4). Wir diskutieren die Existenz für $t \in [0, a]$ mit a > 0. Betrachte eine rechtsseitig stetige Modifikation $(Y_t)_{t \in [0, a]}$ des Submartingals

$$X_t - E(X_a \mid \mathfrak{F}_t), \qquad t \in [0, a],$$

gem. Satz²² 9. Für $n \in \mathbb{N}$ und $I^{(n)} = \{j/2^n \cdot a : j = 0, \dots, 2^n\}$ hat man die Doobsche Zerlegung

$$Y_t = M_t^{(n)} + A_t^{(n)}, t \in I^{(n)}.$$

Ein Kompaktheitsschluß, für den (ii) verwendet wird, zeigt: es ex. eine Teilfolge $(A_a^{(n_k)})_{k\in\mathbb{N}}$ von $(A_a^{(n)})_{n\in\mathbb{N}}$ sowie $Z\in L_1(\Omega,\mathfrak{A},P)$, so daß

$$\forall \xi \in L_{\infty}(\Omega, \mathfrak{A}, P) : \lim_{k \to \infty} E(\xi \cdot A_a^{(n_k)}) = E(\xi \cdot Z).$$

²¹Allgemeinere Fassung bei Karatzas, Shreve (1999).

²²Anwendbar wg. (i) und Proposition 8.

Betrachte rechtsseitig stetige Modifikationen $(M_t)_{t\in[0,a]}$ des Martingals

$$E(X_a - Z \mid \mathfrak{F}_t), \qquad t \in [0, a],$$

sowie $(A_t)_{t \in [0,a]}$ des Submartingals

$$Y_t + E(Z \mid \mathfrak{F}_t), \qquad t \in [0, a],$$

gem. Satz 9. Klar: $X_t = M_t + A_t$ und M ist ein Martingal. Zu zeigen bleibt die linksseitige Stetigkeit von A und M sowie die Monotonie von A; hier geht die Stetigkeit von X ein.

Im folgenden: \mathfrak{F} erfülle die üblichen Voraussetzungen. Kurz: Martingal statt Martingal bzgl. \mathfrak{F} . Gleichheit von Prozessen im Sinne der Ununterscheidbarkeit.

Definition 14. X quadratisch integrierbar, falls

$$\forall \ t \in I : E(X_t^2) < \infty.$$

Bez.: $\mathfrak{M}_2^c = \mathfrak{M}_2^c(\mathfrak{F})$ sei der Vektorraum aller stetigen, quadratisch integrierbaren Martingale mit $X_0 = 0$.

Bemerkung 8. Klar: für $X \in \mathfrak{M}_2^c$ ist $X^2 = (X_t^2)_{t \in I}$ stetiges Submartingal.

Definition 15. Quadratische Variation von $X \in \mathfrak{M}_2^c$ ist der²³ stetige, wachsende Prozeß $(A_t)_{t \in I}$ in der Doob-Meyer-Zerlegung

$$X_t^2 = M_t + A_t$$

von X^2 . Bez.: $\langle X \rangle_t = A_t$.

Vgl. Übung 2.3.b für den kompensierten Poisson-Prozeß.

Definition 16. Für $X, Y \in \mathfrak{M}_2^c$ heißt²⁴

$$\langle X, Y \rangle_t = \frac{1}{4} (\langle X + Y \rangle_t - \langle X - Y \rangle_t), \quad t \in I,$$

der Kreuz- $Variationsproze\beta$. X und Y heißen orthogonal, falls

$$\langle X, Y \rangle = 0.$$

Proposition 10. Für $X, Y \in \mathfrak{M}_2^c$ gilt

- (i) $\langle X, X \rangle = \langle X \rangle$,
- (ii) äquivalent sind
 - (a) XY Z ist Martingal $\wedge Z = A' A''$ mit A', A'' stetig, wachsend,
 - (b) $Z = \langle X, Y \rangle$,

²³Eindeutig bestimmt bis auf Ununterscheidbarkeit.

 $^{^{24} \}mbox{Polarisation}.$

- (iii) äquivalent sind
 - (a) X, Y orthogonal,
 - (b) XY Martingal,
 - (c) $E((X_t X_s) \cdot (Y_t Y_s) | \mathfrak{F}_s) = 0$ für alle $0 \le s < t$, ²⁵
- (iv) $\langle \cdot, \cdot \rangle$ ist symmetrisch und bilinear,
- (v) $\langle X, Y \rangle^2 \le \langle X \rangle \cdot \langle Y \rangle$.

Beweis. ad (i):

$$\langle X, X \rangle_t = \frac{1}{4} \langle 2X \rangle_t = \langle X \rangle_t.$$

ad (ii): "(b) \Rightarrow (a)": $(X+Y)^2 - \langle X+Y \rangle$ und $(X-Y)^2 - \langle X-Y \rangle$ sind Martingale, somit auch ihre Differenz

$$(X+Y)^2 - (X-Y)^2 - \langle X+Y \rangle + \langle X-Y \rangle = 4XY - 4\langle X,Y \rangle.$$

"(a) \Rightarrow (b)": siehe Karatzas, Shreve (1999, p. 31).

ad (iii): $(a) \Leftrightarrow (b)$ folgt aus (ii).

 $,(b) \Leftrightarrow (c)$ ".

$$E((X_t - X_s) \cdot (Y_t - Y_s) \mid \mathfrak{F}_s) = E(X_t Y_t + X_s Y_s - X_t Y_s - X_s Y_t \mid \mathfrak{F}_s)$$

= $E(X_t Y_t \mid \mathfrak{F}_s) - X_s Y_s$.

ad (iv): Symmetrie klar. Für $\alpha \in \mathbb{R}$ sind

$$(\alpha X) \cdot Y - \langle \alpha X, Y \rangle$$
 und $\alpha \cdot (XY) - \alpha \cdot \langle X, Y \rangle$

gem. (ii) Martingale. Mit (ii) folgt ebenfalls $\alpha \langle X, Y \rangle = \langle \alpha X, Y \rangle$. Beweis der Additivität analog.

ad (v): Folgt wie üblich aus (iv) und $\langle X \rangle_t \geq 0$.

Definition 17. Sei $\pi = \{t_0, \dots, t_m\}$ mit $0 = t_0 < \dots < t_m = t$ Zerlegung von [0, t]. Ferner sei $p \in]0, \infty[$. Dann heißt

$$V_t^{(p)}(X;\pi) = \sum_{k=1}^m |X_{t_k} - X_{t_{k-1}}|^p$$

p-te Variation von X auf [0,t] bzgl. π . Ferner heißt

$$\|\pi\| = \max_{k=1,\dots,m} (t_k - t_{k-1})$$

die Feinheit von π . Die durch

$$m_t(X;\delta)(\omega) = \sup\{|X_r(\omega) - X_s(\omega)| : r, s \in [0,t], |r-s| \le \delta\}$$

definierte Abbildung $m_t(X;\cdot)(\cdot):[0,t]\times\Omega\to[0,\infty]$ heißt Stetigkeitsmodul von X auf [0,t].

²⁵Inkremente sind bedingt "unkorreliert".

Bemerkung 9. Sei X stetig. Dann ist $m_t(X;\cdot)(\cdot)$ endlich und $m_t(X;\delta)$ ist \mathfrak{F}_t - $\mathfrak{B}(I)$ meßbar. Ferner

$$\forall \ \omega \in \Omega : \lim_{\delta \to 0} m_t(X; \delta)(\omega) = 0.$$

Satz 11. Gelte $\lim_{n\to\infty} \|\pi_n\| = 0$ für Folge von Zerlegungen π_n von [0,t] und sei $X \in \mathfrak{M}_2^c$. Dann

$$V_t^{(2)}(X;\pi_n) \stackrel{P\text{-stoch.}}{\to} \langle X \rangle_t.$$

Beweis.

1. Fall: X und $\langle X \rangle$ beschränkt auf [0,t]. Genauer

$$P\left(\bigcap_{s\in[0,t]} \{\max\{|X_s|,\langle X\rangle_s\} \le K\}\right) = 1.$$

Wir zeigen hier sogar L_2 -Konvergenz. Mit obigen Bezeichnungen gilt

$$E\left(V_t^{(2)}(X;\pi) - \langle X \rangle_t\right)^2 = E\left(\sum_{k=1}^m \underbrace{\left(X_{t_k} - X_{t_{k-1}}\right)^2 - \left(\langle X \rangle_{t_k} - \langle X \rangle_{t_{k-1}}\right)}_{=Y_k}\right)^2$$
$$= \sum_{k,\ell=1}^m E(Y_k \cdot Y_\ell).$$

Wir zeigen

$$\forall \ k \neq \ell : E(Y_k \cdot Y_\ell) = 0. \tag{5}$$

Für $0 \le s < t \le u < v$ gilt²⁶

$$E((X_v - X_u)^2 \mid \mathfrak{F}_t) = E(X_v^2 - X_u^2 \mid \mathfrak{F}_t)$$

$$= E(X_v^2 - \langle X \rangle_v - (X_u^2 - \langle X \rangle_u) \mid \mathfrak{F}_t) + E(\langle X \rangle_v - \langle X \rangle_u \mid \mathfrak{F}_t)$$

$$= E(\langle X \rangle_v - \langle X \rangle_u \mid \mathfrak{F}_t).$$

Somit für $k < \ell$ (und analog für $\ell < k$)

$$E(Y_k \cdot Y_\ell \mid \mathfrak{F}_{t_k}) = Y_k \cdot E(Y_\ell \mid \mathfrak{F}_{t_k}) = 0,$$

so daß (5) folgt.

Also

$$E\left(V_t^{(2)}(X;\pi) - \langle X \rangle_t\right)^2$$

$$= \sum_{k=1}^m E\left((X_{t_k} - X_{t_{k-1}})^2 - (\langle X \rangle_{t_k} - \langle X \rangle_{t_{k-1}})\right)^2$$

$$\leq 2\sum_{k=1}^m E\left((X_{t_k} - X_{t_{k-1}})^4 + (\langle X \rangle_{t_k} - \langle X \rangle_{t_{k-1}})^2\right)$$

$$\leq 2 \cdot E\left(V_t^{(4)}(X;\pi)\right) + 2 \cdot E\left(m_t(\langle X \rangle; ||\pi||) \cdot \langle X \rangle_t\right).$$

 $[\]overline{{}^{26}E(X_uX_v \mid \mathfrak{F}_t) = E(E(X_uX_v \mid \mathfrak{F}_u) \mid \mathfrak{F}_t)} = E(X_uE(X_v \mid \mathfrak{F}_u) \mid \mathfrak{F}_t) = E(X_u^2 \mid \mathfrak{F}_t).$

Es gilt

$$E\left(V_t^{(2)}(X;\pi)\right)^2 \le 6 \cdot K^4,$$

siehe Karatzas, Shreve (1999, Lemma 1.5.9). Ferner

$$V_t^{(4)}(X;\pi) \le m_t(X; \|\pi\|)^2 \cdot V_t^{(2)}(X;\pi)$$

und hiermit

$$E(V_t^{(4)}(X;\pi)) \le \left(E\left(V_t^{(2)}(X;\pi)\right)^2 \right)^{1/2} \cdot \left(E\left(m_t(X;\|\pi\|)^4\right) \right)^{1/2}$$

$$\le 3K^2 \cdot \left(E\left(m_t(X;\|\pi\|)^4\right) \right)^{1/2}.$$

Klar

$$m_t(X; \delta) \le 2K, \qquad m_t(\langle X \rangle; \delta) \le K.$$

Der Lebesguesche Grenzwertsatz und die Stetigkeit der Pfade sichern

$$\lim_{n \to \infty} E\left(V_t^{(2)}(X; \pi_n) - \langle X \rangle_t\right)^2 = 0.$$

2. Fall: keine Beschränktheitsvoraussetzungen. Rückführung auf 1. Fall (*Lokalisation*). Definiere

$$T_K = \inf\{t \in I : |X_t| \ge K \lor \langle X \rangle_t \ge K\}, \qquad K \in \mathbb{N}.$$

Proposition 5 zeigt, daß T_K Stoppzeit ist. Die gestoppten Prozesse

$$X_t^{(K)} = X_{T_K \wedge t}, \qquad t \in I,$$

und

$$X_{T_K \wedge t}^2 - \langle X \rangle_{T_K \wedge t}, \qquad t \in I,$$

sind beschränkte Martingale, siehe Übung 3.2. Die Eindeutigkeit der Doob-Meyer-Zerlegung liefert

$$\langle X \rangle_{T_K \wedge t} = \langle X^{(K)} \rangle_t.$$

Gemäß Fall 1.) gilt für festes $K \in \mathbb{N}$

$$\lim_{n \to \infty} E\left(V_t^{(2)}(X^{(K)}; \pi_n) - \langle X^{(K)} \rangle_t\right)^2 = 0.$$

Setze

$$B_n^{\varepsilon} = \{ |V_t^{(2)}(X; \pi_n) - \langle X \rangle_t | \ge \varepsilon \}, \qquad A_K = \{ T_K < t \}.$$

Es gilt $\lim_{K\to\infty} T_K(\omega) = \infty$ für alle $\omega \in \Omega$ wegen der Stetigkeit der Pfade von X und $\langle X \rangle$, also

$$\lim_{K \to \infty} P(A_K) = 0.$$

Weiter

$$P(B_n^{\varepsilon}) = P(B_n^{\varepsilon} \cap A_K) + P(B_n^{\varepsilon} \setminus A_K)$$

$$\leq P(A_K) + P(\{|V_t^{(2)}(X^{(K)}; \pi_n) - \langle X^{(K)} \rangle_t| \geq \varepsilon\}),$$

und somit

$$\limsup_{n\to\infty} P(B_n^{\varepsilon}) \le P(A_K).$$

Abschließend: Die Wahl von p=2 bei der Variation ist angemessen für stetige, quadratisch integrierbare Martingale.

Satz 12. Sei $(X_t, \mathfrak{F}_t)_{t \in I}$ Prozeß mit stetigen Pfaden, p > 0 und L_t Zufallsvariable, so daß

$$V_t^{(p)}(X;\pi_n) \stackrel{P\text{-stoch.}}{\to} L_t$$

falls $\|\pi_n\| \to 0$. Dann gilt für q > p

$$V_t^{(q)}(X;\pi_n) \stackrel{P\text{-stoch.}}{\to} 0$$

 und^{27} für 0 < q < p

$$V_t^{(q)}(X;\pi_n) \cdot 1_{\{L_t>0\}} \stackrel{P\text{-stoch.}}{\longrightarrow} \infty \cdot 1_{\{L_t>0\}},$$

falls $\|\pi_n\| \to 0$.

Beweis. Übung 4.2.

Eine wichtige Konsequenz der Sätze 11 und 12: die Definition von stochastischen Integralen bzgl. stetiger quadratisch-integrierbarer Martingale X, etwa mit $\langle X \rangle_t > 0$ für alle t > 0, kann nicht pfadweise unter Rückgriff auf die deterministische Lebesgue-Stieltjes-Theorie erfolgen.

4 Der Kolmogorovsche Konsistenzsatz

Gegeben: Meßraum (S, \mathfrak{S}) und beliebige Menge $I \neq \emptyset$, sowie zunächst ein stochastischer Prozeß $X = (X_t)_{t \in I}$ auf $(\Omega, \mathfrak{A}, P)$ mit Zustandsraum (S, \mathfrak{S}) .

Für $\emptyset \neq J \subset I$ sei $X_J : \Omega \to S^J$ durch

$$(X_J(\omega))(t) = X_t(\omega)$$

für $\omega \in \Omega$ und $t \in J$ definiert.

Bemerkung 10. X_J ist \mathfrak{A} - \mathfrak{S}^J -meßbar.

Definition 18. In obiger Situation heißt das Bildmaß²⁸ X_IP auf (S^I, \mathfrak{S}^I) die Verteilung von X (auf dem Raum (S^I, \mathfrak{S}^I)).

Bemerkung 11. Sei μ ein Wahrscheinlichkeitsmaß auf (S^I, \mathfrak{S}^I) . Betrachte den durch

$$X_t(\omega) = \omega(t)$$

für $\omega \in S^I$ und $t \in I$ definierten kanonischen Prozeß. Klar: $X_I \mu = \mu$, da $X_I = \mathrm{Id}$.

Also: Konstruktion von stochastischen Prozessen durch Konstruktion von Wahrscheinlichkeitsmaßen auf (S^I, \mathfrak{S}^I) .

 $^{^{27} \}infty \cdot 0 = 0.$

²⁸Also $(X_I P)(A) = P(\{\omega \in \Omega : X_{\cdot}(\omega) \in A\})$ für $A \in \mathfrak{S}^I$.

Beispiel 10.

- (i) Produktmaße: hier I und (S,\mathfrak{S}) beliebig, aber man erhält nur Prozesse mit unabhängigen Zufallselementen.
- (ii) Markov-Kerne: Satz von Ionesu-Tulcea für $I = \mathbb{N}$ und (S, \mathfrak{S}) beliebig.

Nun: I beliebig, S geeigneter topologischer Raum und $\mathfrak{S} = \mathfrak{B}(S)$. Setze $\mathfrak{P}_0(I) = \{J \subset I : J \neq \emptyset \text{ endlich}\}$, betrachte die Projektionen

[$\sigma \subset I : \sigma \neq \emptyset$ endiren], betrachte die I rojektione

$$\pi_{J_2}^{J_1}: S^{J_1} \to S^{J_2} \qquad (z_j)_{j \in J_1} \mapsto (z_j)_{j \in J_2}$$

für $\emptyset \neq J_2 \subset J_1 \subset I$. Kurz: $\pi_J = \pi_J^I$.

Definition 19. $(X_JP)_{J\in\mathfrak{P}_0(I)}$ heißt²⁹ die Familie der endlich-dimensionalen Randverteilungen von X.

Bemerkung 12.

(i) Für $J = \{t_1, \dots, t_n\}, A_1, \dots, A_n \in \mathfrak{S}$ $X_J P(A_1 \times \dots \times A_n) = P(\{(X_{t_1}, \dots, X_{t_n}) \in A_1 \times \dots \times A_n\}).$

(ii) Sei $X' = (X'_t)_{t \in I}$ ein Prozeß auf einem Wahrscheinlichkeitsraum $(\Omega', \mathfrak{A}', P')$ mit Zustandsraum (S, \mathfrak{S}) . Dann

$$X_I P = X_I' P' \quad \Leftrightarrow \quad \forall \ J \in \mathfrak{P}_0(I) : \quad X_J P = X_J' P'.$$

Frage: Existenz eines Prozesses mit vorgegebenen endlich-dimensioanlen Randverteilungen?

Definition 20. Familie $(\mu_J)_{J \in \mathfrak{P}_0(I)}$ von Wahrscheinlichkeitsmaßen μ_J auf (S^J, \mathfrak{S}^J) heißt projektiv, falls

$$\forall J_1, J_2 \in \mathfrak{P}_0(I): J_2 \subset J_1 \Rightarrow \mu_{J_2} = \pi_{J_2}^{J_1} \mu_{J_1}.$$

Klar: X stochastischer Proze $\beta \Rightarrow (X_J P)_{J \in \mathfrak{P}_0}$ projektiv.

Definition 21. Topologischer Raum (M, \mathfrak{O}) heißt *polnisch*, falls eine Metrik ρ auf M existiert, so daß

- (i) ρ die Topologie \mathfrak{O} erzeugt,
- (ii) (M, ρ) vollständig und separabel.

Beispiel 11. $M = \mathbb{R}^d$, jeder separable Banachraum, $M = C([0, \infty[)$ mit der Topologie der gleichmäßigen Konvergenz auf Kompakta, siehe Proposition II.3.

²⁹Oft identifiziert man X_JP mit einer Verteilung auf $\mathbb{R}^{|J|}$.

Satz 13 (Äußere Regularität von Borel-Maßen). Sei (M, ρ) ein metrischer Raum und ν ein Wahrscheinlichkeitsmaß auf $(M, \mathfrak{B}(M))$. Dann gilt

$$\nu(A) = \inf\{\nu(O) : O \supset A, O \text{ offen}\} = \sup\{\nu(C) : C \subset A, A \text{ abgeschlossen}\}.$$

Beweis. Übung 4.4.

Satz 14 (Innere Regularität von Borel-Maßen). Sei (M, \mathfrak{O}) ein polnischer Raum und ν ein Wahrscheinlichkeitsmaß auf $(M, \mathfrak{B}(M))$. Dann gilt

$$\nu(A) = \sup \{ \nu(C) : C \subset A, C \text{ kompakt} \}.$$

Beweis. Wir zeigen die Aussage zunächst für A=M, also

$$1 = \sup\{\nu(C) : C \subset M, \ C \text{ kompakt}\}. \tag{6}$$

OBdA: (M, ρ) vollständiger separabler metrischer Raum. Wähle $(m_i)_{i \in \mathbb{N}}$ dicht in M. Setze

$$B_{n,i} = \{ m \in M : \rho(m, m_i) < 1/n \}$$

für $i, n \in \mathbb{N}$. Sei $\varepsilon > 0$. Wähle $i_n \in \mathbb{N}$ mit

$$\nu(M \setminus \bigcup_{i=1}^{i_n} B_{n,i}) \le \varepsilon \cdot 2^{-n}.$$

Setze

$$B = \bigcap_{n=1}^{\infty} \bigcup_{i=1}^{i_n} B_{n,i}.$$

Dann

$$\nu(M \setminus \overline{B}) \le \nu(M \setminus B) \le \sum_{n=1}^{\infty} \nu(M \setminus \bigcup_{i=1}^{i_n} B_{n,i}) \le \varepsilon.$$

Um (6) zu folgern, bleibt zu zeigen, daß \overline{B} kompakt ist. Dazu zeigen wir, daß jede Folge $(z_j)_{j\in\mathbb{N}}$ in B eine Cauchy-Teilfolge enthält und verwenden dann die Vollständigkeit von (M, ρ) .

Nach Definition von B existiert $i_1^* \in \{1, \ldots, i_1\}$, so daß $|\{j \in \mathbb{N} : z_j \in B_{1,i_1^*}\}| = \infty$, d.h. es existiert eine Teilfolge, die stets in B_{1,i_1^*} liegt. Durch Iteration und Diagonalisierung bekommt man so eine Folge von Indizes

$$i_n^* \in \{1, \dots, i_n\}$$

und eine Teilfolge $(z_{j_n})_{n\in\mathbb{N}}$ von $(z_j)_{j\in\mathbb{N}}$, welche für alle $n\geq k$

$$z_{j_n} \in B_{k,i_k^*}$$

erfüllt. Also ist $(z_i)_{i\in\mathbb{N}}$ eine Cauchy-Folge.

Nun sei $A \in \mathfrak{B}(M)$ beliebig. Nach Satz 13 existiert für $\varepsilon > 0$ eine abgeschlossene Menge $C \subset A$ mit $\nu(A \setminus C) \leq \varepsilon$. Wegen (6) existiert eine kompakte Menge $K \subset M$ mit $\nu(M \setminus K) \leq \varepsilon$. Fazit: $D = C \cap K \subset A$ ist kompakt und erfüllt

$$\nu(A \setminus D) < 2\varepsilon$$
.

Satz 15 (Konsistenzsatz von Daniell 1918, Kolmogorov 1933). Sei (S, \mathfrak{D}) ein polnischer Raum, $\mathfrak{S} = \mathfrak{B}(S)$, und $(\mu_J)_{J \in \mathfrak{P}_0(I)}$ eine projektive Familie von Wahrscheinlichkeitsmaßen μ_J auf (S^J, \mathfrak{S}^J) . Dann existiert genau ein Wahrscheinlichkeitsmaß μ auf (S^I, \mathfrak{S}^I) , so daß

$$\forall J \in \mathfrak{P}_0(I) : \pi_J \mu = \mu_J.$$

Für den Beweis benötigen wir zwei Lemmata.

Lemma 3. Ist (S, \mathfrak{O}) ein polnischer Raum und $J \neq \emptyset$ eine endliche Menge, so ist (S^J, \mathfrak{O}^J) ein polnischer Raum und $\mathfrak{B}(S^J) = (\mathfrak{B}(S))^J$.

Beweis. Siehe Gänssler, Stute (1977, Satz 1.3.12). Es gilt stets $\mathfrak{B}(S^J) \supset (\mathfrak{B}(S))^J$ und bei polnischen Räumen auch $\mathfrak{B}(S^J) \subset (\mathfrak{B}(S))^J$.

Lemma 4. Sei (S, ρ) ein metrischer Raum, $I \neq \emptyset$, $J_n \in \mathfrak{P}_0(I)$ sowie $K_n \subset S^{J_n}$ kompakt. Setze

$$Y_n = \bigcap_{\ell=1}^n (\pi_{J_\ell})^{-1}(K_\ell).$$

Falls $Y_n \neq \emptyset$ für alle $n \in \mathbb{N}$, so ist³⁰ $\bigcap_{n=1}^{\infty} Y_n \neq \emptyset$.

Beweis. Sei $(y_n)_{n\in\mathbb{N}}$ eine Folge in S^I mit $y_n\in Y_n$. Für $m\geq n$ ist $y_m\in Y_n$, also folgt für $t\in J_n$

$$y_m(t) = \pi_{\{t\}}^{J_n} \circ \pi_{J_n}(y_m) \in \pi_{\{t\}}^{J_n}(K_n),$$

und $\pi_{\{t\}}^{J_n}(K_n)$ ist kompakt. Setze $J=\bigcup_{n=1}^\infty J_n$. Es existiert eine Teilfolge $(y_{n_\ell})_{\ell\in\mathbb{N}}$, so daß für jedes $t\in J$ die Folge $(y_{n_\ell}(t))_{\ell\in\mathbb{N}}$ konvergiert. Fixiere $a\in S$ und definiere $z\in S^I$ durch

$$z(t) = \lim_{\ell \to \infty} y_{n_{\ell}}(t),$$

falls $t \in J$, und andernfalls durch z(t) = a. Da K_n abgeschlossen, folgt $\pi_{J_n}(z) \in K_n$ für alle $n \in \mathbb{N}$ und damit $z \in \bigcap_{n=1}^{\infty} Y_n$.

Beweis von Satz 15. Eindeutigkeit: siehe Bemerkung 12. Existenz: Wir betrachten die Algebra

$$\mathfrak{S}_0^I := \bigcup_{J \in \mathfrak{P}_0(I)} \sigma(\{\pi_J\})$$

der Zylindermengen. Für $A\in\mathfrak{S}_0^I$ von der Form $A=\pi_J^{-1}(B)$ für $B\in\mathfrak{S}^J$ und $J\in\mathfrak{P}_0(I)$ setzen wir

$$\widehat{\mu}(A) := \mu_J(B).$$

Dies ist wohldefiniert, da $(\mu_J)_{J\in\mathfrak{P}(I)}$ eine projektive Familie ist. Klar: $\widehat{\mu}$ ist Inhalt auf \mathfrak{S}_0^I . Nach dem Maßfortsetzungssatz genügt es nun zu zeigen, daß $\widehat{\mu}$ stetig in \emptyset ist.

Seien also $Z_n \in \mathfrak{S}_0^I$ mit $Z_n \downarrow \emptyset$. Annahme: $\inf_{n \in \mathbb{N}} \widehat{\mu}(Z_n) = \alpha > 0$. Es sei

$$Z_n = \pi_{J_n}^{-1}(B_n)$$

 $[\]overline{^{30}}$ Dies verallgemeinert den Cantorschen Durchschnittssatz, der den Falle |I|=1 behandelt.

mit $B_n \in \mathfrak{S}^{J_n}$. OBdA können wir $J_1 \subset J_2 \subset \ldots$ voraussetzen. Nach Lemma 3 und Satz 14 existieren kompakte Mengen $K_n \subset S^J$ mit $\mu_{J_n}(B_n \setminus K_n) \leq 2^{-n} \cdot \alpha$. Setze $Z'_n = \pi_{J_n}^{-1}(K_n)$, dann folgt

$$\widehat{\mu}(Z_n \setminus Z_n') \le 2^{-n} \cdot \alpha.$$

Damit hat man für Y_n gemäß Lemma 4

$$\widehat{\mu}(Z_n) - \widehat{\mu}(Y_n) = \widehat{\mu}\left(\bigcup_{\ell=1}^n (Z_n \setminus Z'_\ell)\right) \le \sum_{\ell=1}^n \widehat{\mu}(Z_\ell \setminus Z'_\ell) < \alpha.$$

Da $\widehat{\mu}(Z_n) \geq \alpha$, folgt hieraus $\widehat{\mu}(Y_n) > 0$ und damit $Y_n \neq \emptyset$ für alle $n \in \mathbb{N}$. Aus Lemma 4 folgt nun $\bigcap_n Y_n \neq \emptyset$, ein Widerspruch.

Definition 22. In der Situation von Satz 15 heißt μ der *projektive Limes* der Familie $(\mu_J)_{J \in \mathfrak{P}(I)}$, Bez.: $\mu = \lim_{J \in \mathfrak{P}(J)} \mu_J$.

Anwendung: Prozesse mit unabhängigen Inkrementen. Im folgenden $I = [0, \infty[$ und $(S, \mathfrak{S}) = (\mathbb{R}^d, \mathfrak{B}(\mathbb{R}^d)).$

Definition 23. $(X_t)_{t \in I}$ besitzt

(i) unabhängige Inkremente, falls

$$X_{t_1} - X_{t_0}, \dots, X_{t_n} - X_{t_{n-1}}$$

unabhängig für alle $n \in \mathbb{N}$ und $0 \le t_0 < \cdots < t_n$.

(ii) stationäre Inkremente, falls für alle $0 \le s < t$ die Verteilungen von $X_t - X_s$ und $X_{t-s} - X_0$ übereinstimmen.

Lemma 5. Für $X = (X_t)_{t \in I}$ mit X_0 *P*-f.s. konstant gilt

X besitzt unabhängige Inkremente $\iff \forall \ 0 \le s < t : X_t - X_s$ unabhängig von \mathfrak{F}_s^X .

Beweis. \ll : induktiv. \gg Fixiere s und setze

$$\mathfrak{D} = \{ A \in \mathfrak{F}_s^X : 1_A, X_t - X_s \text{ unabhängig} \},$$

$$\mathfrak{C} = \bigcup_{n \in \mathbb{N}, \ 0 = s_0 < \dots < s_n = s} \sigma(\{X_{s_0}, \dots, X_{s_n}\}).$$

Klar: $\mathfrak D$ ist Dynkin-System, $\mathfrak C\subset \mathfrak F^X_s$, $\sigma(\mathfrak C)=\mathfrak F^X_s$, $\mathfrak C$ ist \cap -stabil. Wir zeigen $\mathfrak C\subset \mathfrak D$ und schließen dann

$$\mathfrak{F}_{\mathfrak{s}}^X = \sigma(\mathfrak{C}) = \delta(\mathfrak{C}) \subset \mathfrak{D} \subset \mathfrak{F}_{\mathfrak{s}}^X$$

Nach Voraussetzung gilt für $0 = s_0 < \cdots < s_n = s < t$

$$X_0, X_{s_1} - X_{s_0}, \dots, X_{s_n} - X_{s_{n-1}}, X_t - X_s$$
 unabhängig.

Ferner

$$\sigma(\{X_0, X_{s_1} - X_{s_0}, \dots, X_{s_n} - X_{s_{n-1}}\}) = \sigma(\{X_0, X_{s_1}, \dots, X_{s_n}\}).$$

Sei X ein Prozeß mit unabhängigen Inkrementen. Setze

$$\nu_{s,t} = P_{X_t - X_s}, \qquad 0 \le s \le t.$$

Beispiel 12. Poisson-Prozeß besitzt stationäre, unabhängige Inkremente. Stationarität: klar, da $X_t - X_s$ Poisson-verteilt mit Parameter $\lambda(t-s)$. Unabhängigkeit: beachte $\mathfrak{F}_s^X \subset \mathfrak{F}_s$ für an \mathfrak{F} adaptierte Prozesse X und wende Lemma 5 an.

Bemerkung 13.

- (i) Offenbar gilt $\nu_{s,t} = \nu_{s,r} * \nu_{r,t}$ für $0 \le s < r < t$.
- (ii) Falls $X_0 = 0$, so ist die Verteilung von X durch $(\nu_{s,t})_{0 \le s < t}$ eindeutig bestimmt.

Satz 16. Sei $(\nu_{s,t})_{0 \le s < t}$ eine Familie von Wahrscheinlichkeitsmaßen auf $(\mathbb{R}^d, \mathfrak{B}(\mathbb{R}^d))$

$$\forall \ 0 \le s < r < t : \quad \nu_{s,t} = \nu_{s,r} * \nu_{r,t}. \tag{7}$$

Dann existiert ein Wahrscheinlichkeitsraum $(\Omega, \mathfrak{A}, P)$ und ein darauf definierter stochastischer Prozeß $X = (X_t)_{t \in I}$ mit Zustandsraum $(\mathbb{R}^d, \mathfrak{B}(\mathbb{R}^d))$, so daß

- (i) $X_0 = 0$.
- (ii) X hat unabhängige Inkremente.
- (iii) $\forall \ 0 \le s < t : P_{X_t X_s} = \nu_{s,t}$.

Durch diese Forderungen ist die Verteilung des Prozesses eindeutig bestimmt.

Beweis. Wende Satz 15 und Bemerkung 13 an.

Bemerkung 14. Spezialfall: Prozesse mit unabhängigen und stationären Zuwächsen und $X_0 = 0$ Hier wird X in seiner Verteilung schon durch $\nu_t = \nu_{t,0}$ bestimmt. Die Familie $(\nu_t)_{t>0}$ heißt Faltungshalbgruppe $(\nu_t * \nu_s = \nu_{t+s})$. Beispiel: Poisson-Prozeß