

SS 2009 23-04-2009

Optimierung in dynamischer Umgebung

2. Übung

Anmerkung: Wenn im folgenden von einem Graphen G gesprochen wird, und nicht explizit dieser Graph als gerichteter Graph bezeichnet wird, ist ein ungerichteter Graph gemeint.

1 Präsenzübungen

Aufgabe 1

Sei CLIQUE folgendes Problem:

Eingabe: Ein Graph G, und eine natürliche Zahl k.

Ausgabe: 'ja', falls G eine CLIQUE der Größe k enthält.Sonst 'nein'.

Sei INDEPENDENT SET (IS) folgendes Problem:

Eingabe: Ein Graph G, und eine natürliche Zahl k.

Ausgabe: 'ja', falls G eine unabhängige Menge von k Knoten enthält, die paarweise nicht

miteinander verbunden sind. Sonst 'nein'.

Zeigen Sie $CLIQUE \leq_p IS$.

Aufgabe 2

Sei LONGEST PATH folgendes Problem:

Eingabe: Ein Graph G, zwei Knoten u und v von G und eine natürliche Zahl k.

Ausgabe: 'ja', falls ein Pfad ohne Knotenwiederholung von u nach v über k Kanten existiert. Sonst 'nein'.

Sei das Hamiltonkreisproblem (HC) das folgende:

Eingabe: Graph G.

Ausgabe: 'ja', falls ein Hamiltonscher Kreis im ungerichteten Graphen G enthalten ist. Sonst 'nein'. Ein Hamiltonscher Kreis ist ein Kreis, der jeden Knoten genau einmal enthält.

Zeigen Sie $HC \leq_p LONGEST$ PATH.

Aufgabe 3

Sei HALBE CLIQUE folgendes Problem:

Eingabe: Ein Graph G. |V| bezeichne die Anzahl der Knoten von G.

Ausgabe: 'ja', falls G eine Clique der Größe $\lfloor \frac{|V|}{2} \rfloor$ enthält. Sonst 'nein'

Zeigen Sie, dass HALBE CLIQUE NP-vollständig ist.

2 Hausübungen

Aufgabe 4

Führen Sie die Reduktion HC \leq_p TSP durch, wobei:

Problem TSP:

Eingabe: ein ungerichteter, vollständiger Graph G, w eine Kantengewichtsfunktion $w: E \to \mathbb{N}$, k eine natürliche Zahl.

Ausgabe: 'ja', falls in G eine Rundreise existiert, die jeden Knoten genau einmal besucht und zwar so, dass die Summe der Kantengewichte $\leq k$ ist. Sonst 'nein'.

Aufgabe 5

Zeigen Sie, dass das Halteproblem NP-schwer, aber nicht NP-vollständig ist.

Aufgabe 6

Beim NP-vollständigen Entscheidungsproblem SAT ist eine boolesche Formel ϕ in KNF gegeben. Zu entscheiden ist, ob ϕ erfüllbar ist. Beim Entscheidungsproblem Integer Programming sind m Ungleichungen der Form

$$\sum_{i=1}^{n} a_{ij} x_i \le d_j, a_{ij} \in \mathbb{Z}, j = 1, \dots, m$$

gegeben. Zu entscheiden ist, ob eine Belegung der Variablen x_i mit Werten aus \mathbb{Z} existiert, die alle Ungleichungen erfüllt.

Zeigen Sie: SAT \leq_p Integer Programming.

Aufgabe 7

Problem SUBSET SUM (Erzielung einer vorgeschriebenen Teilsumme):

Eingabe: n Zahlen $a_1, \ldots, a_n \in \mathbb{N}$ und eine 'Teilsummenzahl' $S \in \mathbb{N}$.

Ausgabe: 'ja', falls es eine Menge $I \subset \{1, \ldots, n\}$ gibt, so dass $\sum_{i \in I} a_i = S$. Sonst 'nein'.

Problem PARTITION (Zerlegung in zwei gleichgroße Teilsummen):

Eingabe: n Zahlen $a_1, \ldots, a_n \in \mathbb{N}$.

Ausgabe: 'ja', falls es eine Menge $I \subset \{1, \ldots, n\}$ gibt, so dass $\sum_{i \in I} a_i = \sum_{j \notin I} a_j$. Sonst 'nein'.

Zeigen Sie SUBSET SUM \leq_p PARTITION.