

January 28, 2009

10th exercise sheet Set Theory Winter Term 2008/2009

(E10.1) [Rank]

Use the formula

$$\operatorname{rank}(x) = \sup\{\operatorname{rank}(y) + 1 : y \in x\}$$

to prove that the rank-function can be regarded as being defined by transfinite induction. Deduce that this function is absolute.

(E10.2) [Hereditarily finite sets]

Recall that

$$H_{\kappa} = \{x : |\operatorname{tc}(x)| < \kappa\}.$$

The elements of H_{ω} are called the *hereditarily finite sets*.

- (i) Prove that $V_{\omega} = H_{\omega}$.
- (ii) Consider the model (\mathbb{N}, \in) whose underlying set is the set of natural numbers, and where \in is defined by:

 $x \in y \iff$ the *x*th digit in the binary representation of *y* is 1.

Prove $(\mathbb{N}, \in) \cong (H_{\omega}, \in)$.

(E10.3) [Hereditarily countable sets]

In this exercise we assume the axiom of choice.

(i) If $\kappa > \omega$ is a regular cardinal, prove that

$$H_{\kappa} \models \mathbf{ZFC} - \text{Powerset axiom.}$$

(ii) The elements of H_{ω_1} are called the *hereditarily countable sets*. Prove

 $H_{\omega_1} \models \mathbf{ZFC} - \text{Powerset axiom} + \neg \text{Powerset axiom}.$

(E10.4) [Strongly inaccessible cardinals]

In this exercise we assume the axiom of choice.

Let $\kappa > \omega$ be a regular cardinal. Prove that the following statements are equivalent:

(a) H_{κ} is a model of **ZFC**.

(b)
$$H_{\kappa} = V_{\kappa}$$
.

(c) κ is strongly inaccessible.