

December 17, 2008

8th exercise sheet Set Theory Winter Term 2008/2009

(E8.1) [Normal functions]

A function $F: Ord \to Ord$ is called *normal*, if it is increasing

$$\alpha < \beta \Rightarrow F(\alpha) < F(\beta)$$

and continuous at limit ordinals, i.e.

$$F(\lambda) = \sup\{F(\beta) : \beta < \lambda\},\$$

when λ is a limit ordinal.

- (i) Show that, if $F : Ord \to Ord$ is a normal function, $F(\alpha) \ge \alpha$ for all ordinals α , and $F(\lambda)$ is a limit ordinal for all limit ordinals λ .
- (ii) Show that for $\alpha > 1$, the functions $\beta \mapsto \alpha + \beta$, $\beta \mapsto \alpha \cdot \beta$ and $\beta \mapsto \alpha^{\beta}$ in ordinal arithmetic are normal.
- (iii) Show that normal functions are continuous: if F is normal and $\alpha = \sup\{\alpha_i : i \in I\}$, then

$$F(\alpha) = \sup\{F(\alpha_i) : i \in I\}.$$

- (iv) Show that the composition of two normal functions is again normal.
- (v) Show that a normal function has arbitrarily large fixed points.
- (vi) Conclude that there are arbitrarily large ordinals α such that $\aleph_{\alpha} = \alpha$.

(E8.2) [Cantor normal form]

- (i) Show that for every ordinal $\alpha > 0$ there are ordinals β and γ such that $\alpha = \omega^{\beta} + \gamma$ and $\gamma < \alpha$.
- (ii) Deduce that every ordinal $\alpha > 0$ can be written in the form of a finite sum of powers of ω ,

$$\alpha = \omega^{\beta_1} + \omega^{\beta_2} + \ldots + \omega^{\beta_s}$$

with $\beta_1 \ge \beta_2 \ge \ldots \ge \beta_s$.

- (iii) Prove that $\omega^{\alpha} + \omega^{\beta} = \omega^{\beta}$ if $\alpha < \beta$.
- (iv) Show that every ordinal $\alpha > 0$ can be written uniquely as $\alpha = \omega^{\beta} + \gamma$ with $\gamma < \alpha$.
- (v) Prove by induction on s that if $\beta \ge \beta_1 \ge \beta_2 \ge \ldots \ge \beta_s$ and $\gamma = \omega^{\beta_1} + \omega^{\beta_2} + \ldots + \omega^{\beta_s}$, then $\gamma < \omega^{\beta} + \gamma$.
- (vi) Deduce that the representation of an ordinal $\alpha > 0$ as a finite sum of non-increasing powers of ω is unique.

(E8.3) [Grounded graphs]

Let $\mathcal{G} = (G, \rightarrow)$ be a narrow graph and write

$$x \to^+ y_{z}$$

if there is a path $x = g_0 \rightarrow g_1 \rightarrow \ldots \rightarrow g_n = y \ (n > 0)$ in \mathcal{G} .

- (i) Prove that (G, \rightarrow) is grounded iff all graphs $(tc(x), \rightarrow)$ are.
- (ii) Prove that if (G, \rightarrow) is grounded, then so is (G, \rightarrow^+) .

(E8.4) [Extensional collapse]

Call a narrow graph $\mathcal{G} = (G, \rightarrow)$ extensional, if

$$G_{\to a} = G_{\to b} \Longrightarrow a = b.$$

- (i) Verify that the graph associated to a (possibly large) well-order is extensional, and that $(tc(x), \in)$ is extensional for every set x.
- (ii) Show that the decoration of an extensional grounded graph is injective, so that in that case we obtain a graph isomorphism $\mathcal{G} \cong d(\mathcal{G})$.
- (iii) Verify that the only decoration of the graph $(tc(x), \in)$, where x is a grounded set, is the identity.