8th exercise sheet Set Theory Winter Term 2008/2009

(E8.1) [Normal functions]

A function $F:$ Ord \rightarrow Ord is called normal, if it is increasing

$$
\alpha<\beta \Rightarrow F(\alpha)<F(\beta)
$$

and continuous at limit ordinals, i.e.

$$
F(\lambda)=\sup \{F(\beta): \beta<\lambda\},
$$

when λ is a limit ordinal.
(i) Show that, if $F: \operatorname{Ord} \rightarrow$ Ord is a normal function, $F(\alpha) \geqslant \alpha$ for all ordinals α, and $F(\lambda)$ is a limit ordinal for all limit ordinals λ.
(ii) Show that for $\alpha>1$, the functions $\beta \mapsto \alpha+\beta, \beta \mapsto \alpha \cdot \beta$ and $\beta \mapsto \alpha^{\beta}$ in ordinal arithmetic are normal.
(iii) Show that normal functions are continuous: if F is normal and $\alpha=\sup \left\{\alpha_{i}: i \in I\right\}$, then

$$
F(\alpha)=\sup \left\{F\left(\alpha_{i}\right): i \in I\right\} .
$$

(iv) Show that the composition of two normal functions is again normal.
(v) Show that a normal function has arbitrarily large fixed points.
(vi) Conclude that there are arbitrarily large ordinals α such that $\aleph_{\alpha}=\alpha$.

(E8.2) [Cantor normal form]

(i) Show that for every ordinal $\alpha>0$ there are ordinals β and γ such that $\alpha=\omega^{\beta}+\gamma$ and $\gamma<\alpha$.
(ii) Deduce that every ordinal $\alpha>0$ can be written in the form of a finite sum of powers of ω,

$$
\alpha=\omega^{\beta_{1}}+\omega^{\beta_{2}}+\ldots+\omega^{\beta_{s}},
$$

with $\beta_{1} \geqslant \beta_{2} \geqslant \ldots \geqslant \beta_{s}$.
(iii) Prove that $\omega^{\alpha}+\omega^{\beta}=\omega^{\beta}$ if $\alpha<\beta$.
(iv) Show that every ordinal $\alpha>0$ can be written uniquely as $\alpha=\omega^{\beta}+\gamma$ with $\gamma<\alpha$.
(v) Prove by induction on s that if $\beta \geqslant \beta_{1} \geqslant \beta_{2} \geqslant \ldots \geqslant \beta_{s}$ and $\gamma=\omega^{\beta_{1}}+\omega^{\beta_{2}}+\ldots+\omega^{\beta_{s}}$, then $\gamma<\omega^{\beta}+\gamma$.
(vi) Deduce that the representation of an ordinal $\alpha>0$ as a finite sum of non-increasing powers of ω is unique.

(E8.3) [Grounded graphs]

Let $\mathcal{G}=(G, \rightarrow)$ be a narrow graph and write

$$
x \rightarrow^{+} y
$$

if there is a path $x=g_{0} \rightarrow g_{1} \rightarrow \ldots \rightarrow g_{n}=y(n>0)$ in \mathcal{G}.
(i) Prove that (G, \rightarrow) is grounded iff all graphs $(\operatorname{tc}(x), \rightarrow)$ are.
(ii) Prove that if (G, \rightarrow) is grounded, then so is $\left(G, \rightarrow^{+}\right)$.

(E8.4) [Extensional collapse]

Call a narrow graph $\mathcal{G}=(G, \rightarrow)$ extensional, if

$$
G_{\rightarrow a}=G_{\rightarrow b} \Longrightarrow a=b
$$

(i) Verify that the graph associated to a (possibly large) well-order is extensional, and that $(\operatorname{tc}(x), \in)$ is extensional for every set x.
(ii) Show that the decoration of an extensional grounded graph is injective, so that in that case we obtain a graph isomorphism $\mathcal{G} \cong d(\mathcal{G})$.
(iii) Verify that the only decoration of the graph $(\operatorname{tc}(x), \in)$, where x is a grounded set, is the identity.

