

November 26, 2008

6th exercise sheet Set Theory Winter Term 2008/2009

(E6.1)

Show that cardinal numbers κ, λ, μ satisfy the following high school equalities:

(a) $\kappa + 0 = \kappa, \kappa + (\lambda + \mu) = (\kappa + \lambda) + \mu, \kappa + \lambda = \lambda + \kappa.$

(b)
$$\kappa \cdot 0 = 0, \ \kappa \cdot 1 = \kappa, \ \kappa \cdot 2 = \kappa + \kappa$$

- (c) $\kappa \cdot (\lambda \cdot \mu) = (\kappa \cdot \lambda) \cdot \mu, \ \kappa \cdot \lambda = \lambda \cdot \kappa, \ \kappa \cdot (\lambda + \mu) = \kappa \cdot \lambda + \kappa \cdot \mu.$
- (d) $\kappa^0 = 1, \ \kappa^1 = \kappa, \ \kappa^2 = \kappa \cdot \kappa.$
- (e) $(\kappa \cdot \lambda)^{\mu} =_{c} \kappa^{\mu} \cdot \lambda^{\mu}, \ \kappa^{(\lambda+\mu)} = \kappa^{\lambda} \cdot \kappa^{\mu}, \ (\kappa^{\lambda})^{\mu} = \kappa^{\lambda \cdot \mu}.$

Why does the cancellation law

$$\kappa + \mu = \lambda + \mu \Rightarrow \kappa = \lambda$$

fail?

(E6.2)

Show the following implications for all cardinal numbers κ, λ, μ .

$$\begin{split} \kappa &\leqslant \mu \; \Rightarrow \; \kappa + \lambda \leqslant \mu + \lambda \\ \kappa &\leqslant \mu \; \Rightarrow \; \kappa \cdot \lambda \leqslant \mu \cdot \lambda \\ \lambda &\leqslant \mu \; \Rightarrow \; \kappa^{\lambda} \leqslant \kappa^{\mu} \qquad (\kappa \neq 0) \\ \kappa &\leqslant \lambda \; \Rightarrow \; \kappa^{\mu} \leqslant \lambda^{\mu} \end{split}$$

For what values of λ, μ does the third implication fail when $\kappa = 0$?

(E6.3)

Show that $2^{\omega} = \omega$ in ordinal arithmetic, but $2^{\omega} > \omega$ in cardinal arithmetic.

(E6.4)

Show that every infinite cardinal is a limit ordinal.

(E6.5)

Show that the cardinals are closed under suprema of ordinals.

(E6.6)

(AC) Show that $A \leq_c B$ iff there is a surjection $p: B \to A$ or $A = \emptyset$.

(E6.7)

(AC) If κ is an infinite cardinal and we have an indexed family of sets $\{X_i : i \in I\}$, each of which has cardinality $\leq \kappa$, and the cardinality of the index set I is $\leq \kappa$, then the cardinality of both $\sum_{i \in I} X_i$ and $\bigcup_{i \in I} X_i$ is $\leq \kappa$.