

November 5, 2008

3nd exercise sheet Set Theory Winter Term 2008/2009

(E3.1)

(i) Show that there is a unique binary operation $+ : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ such that the following recursion equations hold:

$$n+0 = n$$
$$n+Sm = S(n+m)$$

(ii) Show that + is associative, commutative and satisfies the cancellation law:

$$m + x = n + x \Rightarrow m = n.$$

(iii) Write down recursion equations for multiplication and exponentiation and prove the obvious things.

(E3.2)

A set A is called finite, if $A =_c \{1, 2, ..., n\}$ for some $n \in \mathbb{N}$. Otherwise A is called infinite.

Show that \mathbb{N} is infinite (and make sure that your argument can be formalised in **BST** + Infinity!).

(E3.3)

Let $\mathcal{G} = (G, \rightarrow)$ be a directed graph. We call a set $T \subseteq G$ transitive, if

 $x \to y \in T \Rightarrow x \in T.$

(i) Show that

$$x_0 \to x_1 \to \ldots \to x_n \in T \Rightarrow x_0 \in T$$

for any transitive T.

(ii) Use the Knaster-Tarski Fixed Point Theorem to show that any set $X \subseteq G$ there is a least (in the sense of \subseteq) transitive subset $T \subseteq G$ such that $X \subseteq T$. This set T is of course unique and called the *transitive closure* of X. We will write tc(X) for the transitive closure of X and tc(x) for the transitive closure of $\{x\}$.

(E3.4)

Let $\mathcal{G} = (G, \rightarrow)$ be a directed graph. For all $a \in G$ we write

$$G_{\to a} = \{ x \in G : x \to a \}.$$

A directed graph $\mathcal{G} = (G, \rightarrow)$ is called *grounded* if every non-empty subset $A \subseteq X$ has a \rightarrow -least element: i.e., if every non-empty subset $A \subseteq X$ contains an element $a \in A$ such that $G_{\rightarrow a} \cap A = \emptyset$.

(i) A subset $A \subseteq G$ is called *inductive*, if

$$G_{\to a} \subseteq A \Rightarrow a \in A$$

for all $a \in G$. Prove that the following two statements are equivalent:

- (a) \mathcal{G} is grounded.
- (b) The only inductive subset of G is G itself.
- (ii) Show that if $\mathcal{G} = (G, \rightarrow)$ is grounded, then so is $\mathcal{G}^+ = (G, \rightarrow^+)$, where

 $\begin{array}{rcl} x \to^+ y & \Leftrightarrow & x \in \operatorname{tc}(G_{\to y}) \\ & \Leftrightarrow & \text{there is a path } x = a_0 \to a_1 \to a_2 \ldots \to a_n = y \text{ with } n > 0. \end{array}$

(iii) Let \mathcal{G} be a grounded graph, X be a set and $\varphi : \sum_{a \in G} X^{G \to a} \to X$ be an operation. Prove that there is a unique map $f : G \to X$ such that

$$f(a) = \varphi(a, f \upharpoonright G_{\to a})$$

for all $a \in G$.